Quipu Decorated Permutation Representations Of Finite Groups

Download Quipu Decorated Permutation Representations Of Finite Groups PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quipu Decorated Permutation Representations Of Finite Groups book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quipu: Decorated Permutation Representations Of Finite Groups

This book studies dihedral groups, dicyclic groups, other finite subgroups of the 3-dimensional sphere, and the 2-fold extensions of the symmetric group on 4 letters from the point of view of decorated string diagrams of permutations. These are our metaphorical quipu. As you might expect, the book is replete with illustrations. In (almost) all cases, explicit diagrams for the elements of the group are given. The exception is the binary icosahedral group in which only the generators and relations are exhibited.
Combinatorial Knot Theory

A classic knot is an embedded simple loop in 3-dimensional space. It can be described as a 4-valent planar graph or network in the horizontal plane, with the vertices or crossings corresponding to double points of a projection. At this stage we have the shadow of the knot defined by the projection. We can reconstruct the knot by lifting the crossings into two points in space, one above the other. This information is preserved at the vertices by cutting the arc which appears to go under the over crossing arc. We can then act on this diagram of the knot using the famous Reidemeister moves to mimic the motion of the knot in space. The result is classic combinatorial knot theory. In recent years, many different types of knot theories have been considered where the information stored at the crossings determines how the Reidemeister moves are used, if at all.In this book, we look at all these new theories systematically in a way which any third-year undergraduate mathematics student would understand. This book can form the basis of an undergraduate course or as an entry point for a postgraduate studying topology.
Four-dimensional Paper Constructions After Mobius, Klein And Boy

Explore four-dimensional paper constructions inspired by the work of great mathematicians like Möbius, Klein, Boy, Hopf, and others. These creations will help you visualize four-dimensional space and beyond, transporting you to higher-dimensional spaces. This book is designed to solidify your foundations in various areas of mathematics and physics, with a particular focus on topology.If you are familiar with higher-dimensional spaces from loving sci-fi stories, you may find the four-dimensional illustrations in this book especially intuitive. Imagine starting on Earth and traveling straight up into the universe — where would you end up? Perhaps you would travel in one direction only to eventually return to your starting point. Can you imagine what happens during the course of this trip? By engaging with these four-dimensional paper constructions, you will gain a deeper understanding of this fascinating journey.