The Less Is More Linear Algebra Of Vector Spaces And Matrices

Download The Less Is More Linear Algebra Of Vector Spaces And Matrices PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Less Is More Linear Algebra Of Vector Spaces And Matrices book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Less Is More Linear Algebra of Vector Spaces and Matrices

Designed for a proof-based course on linear algebra, this rigorous and concise textbook intentionally introduces vector spaces, inner products, and vector and matrix norms before Gaussian elimination and eigenvalues so students can quickly discover the singular value decomposition (SVD)—arguably the most enlightening and useful of all matrix factorizations. Gaussian elimination is then introduced after the SVD and the four fundamental subspaces and is presented in the context of vector spaces rather than as a computational recipe. This allows the authors to use linear independence, spanning sets and bases, and the four fundamental subspaces to explain and exploit Gaussian elimination and the LU factorization, as well as the solution of overdetermined linear systems in the least squares sense and eigenvalues and eigenvectors. This unique textbook also includes examples and problems focused on concepts rather than the mechanics of linear algebra. The problems at the end of each chapter that and in an associated website encourage readers to explore how to use the notions introduced in the chapter in a variety of ways. Additional problems, quizzes, and exams will be posted on an accompanying website and updated regularly. The Less Is More Linear Algebra of Vector Spaces and Matrices is for students and researchers interested in learning linear algebra who have the mathematical maturity to appreciate abstract concepts that generalize intuitive ideas. The early introduction of the SVD makes the book particularly useful for those interested in using linear algebra in applications such as scientific computing and data science. It is appropriate for a first proof-based course in linear algebra.
Introduction to Applied Linear Algebra

Author: Stephen Boyd
language: en
Publisher: Cambridge University Press
Release Date: 2018-06-07
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Groups, Matrices, and Vector Spaces

This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.