Groups Matrices And Vector Spaces


Download Groups Matrices And Vector Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Groups Matrices And Vector Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Groups, Matrices, and Vector Spaces


Groups, Matrices, and Vector Spaces

Author: James B. Carrell

language: en

Publisher: Springer

Release Date: 2017-09-02


DOWNLOAD





This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.

Matrix Groups


Matrix Groups

Author: M. L. Curtis

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





These notes were developed from a course taught at Rice Univ- sity in the spring of 1976 and again at the University of Hawaii in the spring of 1977. It is assumed that the students know some linear algebra and a little about differentiation of vector-valued functions. The idea is to introduce students to some of the concepts of Lie group theory-- all done at the concrete level of matrix groups. As much as we could, we motivated developments as a means of deciding when two matrix groups (with different definitions) are isomorphic. In Chapter I "group" is defined and examples are given; ho- morphism and isomorphism are defined. For a field k denotes the algebra of n x n matrices over k We recall that A E Mn(k) has an inverse if and only if det A ~ 0 , and define the general linear group GL(n,k) We construct the skew-field lli of to operate linearly on llin quaternions and note that for A E Mn(lli) we must operate on the right (since we mUltiply a vector by a scalar n on the left). So we use row vectors for R , en, llin and write xA for the row vector obtained by matrix multiplication. We get a ~omplex-valued determinant function on Mn (11) such that det A ~ 0 guarantees that A has an inverse.

Introduction to Applied Linear Algebra


Introduction to Applied Linear Algebra

Author: Stephen Boyd

language: en

Publisher: Cambridge University Press

Release Date: 2018-06-07


DOWNLOAD





A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.