The Definitive Guide To Learning Higher Mathematics


Download The Definitive Guide To Learning Higher Mathematics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Definitive Guide To Learning Higher Mathematics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

The Definitive Guide to Learning Higher Mathematics


The Definitive Guide to Learning Higher Mathematics

Author: Math Vault

language: en

Publisher: Math Vault Publishing

Release Date: 2018-11-01


DOWNLOAD





The Definitive Guide to Learning Higher Mathematics is a comprehensive, illustrated guide to help you optimize higher mathematical learning, thinking and problem solving through 10 foundational principles and countless actionable tips. In 10 chapters and 86 pages, it’ll take you around the different aspects of higher mathematical learning, leaving no stone unturned from material selection, big picture thinking, proximal zone, cognitive techniques to proactive learning, head-processing, scientific method and social learning. Hightlights - Extensive actionable tips to illustrate each principle involved - Extensive annotations, pro-tips, quotes and illustrations for better insight - Carefully prepared after-chapter summaries for better understanding - Printable PDF format (8.5 in. x 11 in.) with linkable table of contents and index for handy reference and reviewing Table of Contents 0. Preface 1. Choose Your Materials Judiciously 2. Always Keep the Big Picture in Mind 3. Operate within the Proximal Zone 4. Isolate Until Mastered Before Moving On 5. Be a Proactive, Independent Thinker and Learner 6. Do Most Things Inside Your Head 7. Practice the Scientific Method in a Creative Way 8. Don’t Fret Too Much About Real-life Applicability 9. Scale Up Learning by Going Social 10. Embrace the Mathematical Experience 11. Last Few Words 12. Index

Advanced Mathematics


Advanced Mathematics

Author: Stanley J. Farlow

language: en

Publisher: John Wiley & Sons

Release Date: 2019-10-08


DOWNLOAD





Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.

Mathematics for Machine Learning


Mathematics for Machine Learning

Author: Marc Peter Deisenroth

language: en

Publisher: Cambridge University Press

Release Date: 2020-04-23


DOWNLOAD





Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.