Foundations Of Biomedical Knowledge Representation

Download Foundations Of Biomedical Knowledge Representation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Foundations Of Biomedical Knowledge Representation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Foundations of Biomedical Knowledge Representation

Medicine and health care are currently faced with a significant rise in their complexity. This is partly due to the progress made during the past three decades in the fundamental biological understanding of the causes of health and disease at the molecular, (sub)cellular, and organ level. Since the end of the 1970s, when knowledge representation and reasoning in the biomedical field became a separate area of research, huge progress has been made in the development of methods and tools that are finally able to impact on the way medicine is being practiced. Even though there are huge differences in the techniques and methods used by biomedical researchers, there is now an increasing tendency to share research results in terms of formal knowledge representation methods, such as ontologies, statistical models, network models, and mathematical models. As there is an urgent need for health-care professionals to make better decisions, computer-based support using this knowledge is now becoming increasingly important. It may also be the only way to integrate research results from the different parts of the spectrum of biomedical and clinical research. The aim of this book is to shed light on developments in knowledge representation at different levels of biomedical application, ranging from human biology to clinical guidelines, and using different techniques, from probability theory and differential equations to logic. The book starts with two introductory chapters followed by 18 contributions organized in the following topical sections: diagnosis of disease; monitoring of health and disease and conformance; assessment of health and personalization; prediction and prognosis of health and disease; treatment of disease; and recommendations.
Principles of Biomedical Informatics

Principles of Biomedial Informatics provides a foundation for understanding the fundamentals of biomedical informatics, which deals with the storage, retrieval, and use of biomedical data for biological problem solving and medical decision making. It covers the application of these principles to the three main biomedical domains of basic biology, clinical medicine, and public health. The author offers a coherent summary, focusing on the three core concept areas of biomedical data and knowledge representation: biomedical information access, biomedical decision making, and information and technology use in biomedical contexts. - Develops principles and methods for representing biomedical data, using information in context and in decision making, and accessing information to assist the medical community in using data to its full potential - Provides a series of principles for expressing biomedical data and ideas in a computable form to integrate biological, clinical, and public health applications - Includes a discussion of user interfaces, interactive graphics, and knowledge resources and reference material on programming languages to provide medical informatics programmers with the technical tools to develop systems
Essential Mathematics And Softwares For Biological Sciences

Author: Dr. JANARDHAN KADARI
language: en
Publisher: Shashwat Publication
Release Date: 2023-06-07
Mathematical and statistical concepts are applied to cellular and molecular biology, genetics, population genetics, quantitative blochemistry, nucleic acid chemistry, microbiology, biotechnology. medicine, pharmacy, numerical taxonomy, ecology and evolution.The Coalescing of genetics, mathematics, Computers has resulted in the emergence of bioinformatics. We talk of next generationn DNA sequencing and micro array. R was created by "Rossihaka and Robert Gentleman" at university of Auckland (New Zealand) currently developed by R development core team