The Computing Dendrite


Download The Computing Dendrite PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Computing Dendrite book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

The Computing Dendrite


The Computing Dendrite

Author: Hermann Cuntz

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-23


DOWNLOAD





Neuronal dendritic trees are complex structures that endow the cell with powerful computing capabilities and allow for high neural interconnectivity. Studying the function of dendritic structures has a long tradition in theoretical neuroscience, starting with the pioneering work by Wilfrid Rall in the 1950s. Recent advances in experimental techniques allow us to study dendrites with a new perspective and in greater detail. The goal of this volume is to provide a résumé of the state-of-the-art in experimental, computational, and mathematical investigations into the functions of dendrites in a variety of neural systems. The book first looks at morphological properties of dendrites and summarizes the approaches to measure dendrite morphology quantitatively and to actually generate synthetic dendrite morphologies in computer models. This morphological characterization ranges from the study of fractal principles to describe dendrite topologies, to the consequences of optimization principles for dendrite shape. Individual approaches are collected to study the aspects of dendrite shape that relate directly to underlying circuit constraints and computation. The second main theme focuses on how dendrites contribute to the computations that neurons perform. What role do dendritic morphology and the distributions of synapses and membrane properties over the dendritic tree have in determining the output of a neuron in response to its input? A wide range of studies is brought together, with topics ranging from general to system-specific phenomena—some having a strong experimental component, and others being fully theoretical. The studies come from many different neural systems and animal species ranging from invertebrates to mammals. With this broad focus, an overview is given of the diversity of mechanisms that dendrites can employ to shape neural computations.

Dendrites


Dendrites

Author: Greg Stuart

language: en

Publisher: Oxford University Press

Release Date: 2017-04-13


DOWNLOAD





Dendrites are complex neuronal structures that receive and integrate synaptic input from other nerve cells. They therefore play a critical role in brain function. Although dendrites were discovered over a century ago, due to the development of powerful new techniques there has been a dramatic resurgence of interest in the properties and function of these beautiful structures. This is the third edition of the first book devoted exclusively to dendrites. It contains a comprehensive survey of the current state of dendritic research across a wide range of topics, from dendritic morphology, evolution, development, and plasticity through to the electrical, biochemical and computational properties of dendrites, and finally to the key role of dendrites in brain disease. The third edition has been thoroughly revised, with the addition of a number of new chapters and comprehensive updates or rewrites of existing chapters by leading experts. "Dendrites" will be of interest to researchers and students in neuroscience and related fields, as well as to anyone interested in how the brain works.

Physics Of Dendrites: Computational Experiments


Physics Of Dendrites: Computational Experiments

Author: Peter K Galenko

language: en

Publisher: World Scientific

Release Date: 1995-01-16


DOWNLOAD





This volume presents the growth of macrostructures in first-order nonequilibrium phase transitions in physical, chemical and biological multicomponent systems. Nonequilibrium thermodynamics and modern problems of crystallization synergetics are discussed. An introduction to computer physics of dendrites is also given. Wonderful variety in growth structures appears to be the consequence of different nonequilibrium alloy crystallization conditions and concerns problems of crystallization synergetics. This book has computer simulation results of the origin and development of the observed variety of primary macroscopic growth structures — cells, dendrites and grains should be regarded as one of the fundamental problems of alloy crystallization. Special attention is paid to the physical nature of phenomena of dendrite formation in alloys.