The Boundary Integral Approach To Static And Dynamic Contact Problems

Download The Boundary Integral Approach To Static And Dynamic Contact Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Boundary Integral Approach To Static And Dynamic Contact Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Boundary Integral Approach to Static and Dynamic Contact Problems

The fields of boundary integral equations and of inequality problems, or more gen erally, of nonsmooth mechanics, have seen, in a remarkably short time, a considerable development in mathematics and in theoretical and applied mechanics. The engineering sciences have also benefited from these developments in that open problems have been attacked succesfully and entirely new methodologies have been developed. The contact problems of elasticity is a class of problems which has offered many open questions to deal with, both to the research workers working on the theory of boundary integral equations and to those working on the theory of inequality problems. Indeed, the area of static and dynamic contact problems could be considered as the testing workbench of the new developments in both the inequality problems and in the boundary integral equations. This book is a first attempt to formulate and study the boundary integral equations arising in inequality contact problems. The present book is a result of more than two decades of research and teaching activity of the first author on boundary integral equations and, of the second author, on inequality problems, as well as the outgrowth of seminars and courses for a variety of audiences in the Technical University of Aachen, the Aristotle University of Thessa loniki, the Universities of Bochum, of Hamburg and Braunschweig, the Pontificia Univ. Catolica in Rio de Janeiro etc.
The Boundary Element Method, Volume 2

The boundary element method (BEM) is a modern numerical technique, which has enjoyed increasing popularity over the last two decades, and is now an established alternative to traditional computational methods of engineering analysis. The main advantage of the BEM is its unique ability to provide a complete solution in terms of boundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with a comprehensive and up-to-date account of the boundary element method and its application to solving engineering problems. Each volume is a self-contained book including a substantial amount of material not previously covered by other text books on the subject. Volume 1 covers applications to heat transfer, acoustics, electrochemistry and fluid mechanics problems, while volume 2 concentrates on solids and structures, describing applications to elasticity, plasticity, elastodynamics, fracture mechanics and contact analysis. The early chapters are designed as a teaching text for final year undergraduate courses. Both volumes reflect the experience of the authors over a period of more than twenty years of boundary element research. This volume, Applications in Solids and Structures, provides a comprehensive presentation of the BEM from fundamentals to advanced engineering applications and encompasses: Elasticity for 2D, 3D and Plates and Shells Non-linear, Transient and Thermal Stress Analysis Crack Growth and Multi-body Contact Mechanics Sensitivity Analysis and Optimisation Analysis of Assembled Structures. An important feature of this book is the in-depth presentation of BEM formulations in all the above fields, including detailed discussions of the basic theory, numerical algorithms and where possible simple examples are included, as well as test results for practical engineering applications of the method. Although most of the methods presented are the latest developments in the field, the author has included some simple techniques, which are helpful in understanding the computer implementation of BEM. Another notable feature is the comprehensive presentation of a new generation of boundary elements known as the Dual Boundary Element Method. Written by an internationally recognised authority in the field, this is essential reading for postgraduates, researchers and practitioners in Aerospace, Mechanical and Civil Engineering and Applied Mathematics.