Test Driven Machine Learning


Download Test Driven Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Test Driven Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Test-Driven Machine Learning


Test-Driven Machine Learning

Author: Justin Bozonier

language: en

Publisher: Packt Publishing Ltd

Release Date: 2015-11-27


DOWNLOAD





Control your machine learning algorithms using test-driven development to achieve quantifiable milestones About This Book Build smart extensions to pre-existing features at work that can help maximize their value Quantify your models to drive real improvement Take your knowledge of basic concepts, such as linear regression and Naive Bayes classification, to the next level and productionalize their models Play what-if games with your models and techniques by following the test-driven exploration process Who This Book Is For This book is intended for data technologists (scientists, analysts, or developers) with previous machine learning experience who are also comfortable reading code in Python. You may be starting, or have already started, a machine learning project at work and are looking for a way to deliver results quickly to enable rapid iteration and improvement. Those looking for examples of how to isolate issues in models and improve them will find ideas in this book to move forward. What You Will Learn Get started with an introduction to test-driven development and familiarize yourself with how to apply these concepts to machine learning Build and test a neural network deterministically, and learn to look for niche cases that cause odd model behaviour Learn to use the multi-armed bandit algorithm to make optimal choices in the face of an enormous amount of uncertainty Generate complex and simple random data to create a wide variety of test cases that can be codified into tests Develop models iteratively, even when using a third-party library Quantify model quality to enable collaboration and rapid iteration Adopt simpler approaches to common machine learning algorithms Take behaviour-driven development principles to articulate test intent In Detail Machine learning is the process of teaching machines to remember data patterns, using them to predict future outcomes, and offering choices that would appeal to individuals based on their past preferences. Machine learning is applicable to a lot of what you do every day. As a result, you can't take forever to deliver your first iteration of software. Learning to build machine learning algorithms within a controlled test framework will speed up your time to deliver, quantify quality expectations with your clients, and enable rapid iteration and collaboration. This book will show you how to quantifiably test machine learning algorithms. The very different, foundational approach of this book starts every example algorithm with the simplest thing that could possibly work. With this approach, seasoned veterans will find simpler approaches to beginning a machine learning algorithm. You will learn how to iterate on these algorithms to enable rapid delivery and improve performance expectations. The book begins with an introduction to test driving machine learning and quantifying model quality. From there, you will test a neural network, predict values with regression, and build upon regression techniques with logistic regression. You will discover how to test different approaches to naive bayes and compare them quantitatively, along with how to apply OOP (Object-Oriented Programming) and OOP patterns to test-driven code, leveraging SciKit-Learn. Finally, you will walk through the development of an algorithm which maximizes the expected value of profit for a marketing campaign by combining one of the classifiers covered with the multiple regression example in the book. Style and approach An example-driven guide that builds a deeper knowledge and understanding of iterative machine learning development, test by test. Each topic develops solutions using failing tests to illustrate problems; these are followed by steps to pass the tests, simply and straightforwardly. Topics which use generated data explore how the data was generated, alongside explanations of the assumptions behind different machine learning techniques.

Learning Test-Driven Development


Learning Test-Driven Development

Author: Saleem Siddiqui

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2021-10-12


DOWNLOAD





Your code is a testament to your skills as a developer. No matter what language you use, code should be clean, elegant, and uncluttered. By using test-driven development (TDD), you'll write code that's easy to understand, retains its elegance, and works for months, even years, to come. With this indispensable guide, you'll learn how to use TDD with three different languages: Go, JavaScript, and Python. Author Saleem Siddiqui shows you how to tackle domain complexity using a unit test-driven approach. TDD partitions requirements into small, implementable features, enabling you to solve problems irrespective of the languages and frameworks you use. With Learning Test-Driven Development at your side, you'll learn how to incorporate TDD into your regular coding practice. This book helps you: Use TDD's divide-and-conquer approach to tame domain complexity Understand how TDD works across languages, testing frameworks, and domain concepts Learn how TDD enables continuous integration Support refactoring and redesign with TDD Learn how to write a simple and effective unit test harness in JavaScript Set up a continuous integration environment with the unit tests produced during TDD Write clean, uncluttered code using TDD in Go, JavaScript, and Python

Test-Driven Development with Python


Test-Driven Development with Python

Author: Harry Percival

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2017-08-02


DOWNLOAD





By taking you through the development of a real web application from beginning to end, the second edition of this hands-on guide demonstrates the practical advantages of test-driven development (TDD) with Python. You’ll learn how to write and run tests before building each part of your app, and then develop the minimum amount of code required to pass those tests. The result? Clean code that works. In the process, you’ll learn the basics of Django, Selenium, Git, jQuery, and Mock, along with current web development techniques. If you’re ready to take your Python skills to the next level, this book—updated for Python 3.6—clearly demonstrates how TDD encourages simple designs and inspires confidence. Dive into the TDD workflow, including the unit test/code cycle and refactoring Use unit tests for classes and functions, and functional tests for user interactions within the browser Learn when and how to use mock objects, and the pros and cons of isolated vs. integrated tests Test and automate your deployments with a staging server Apply tests to the third-party plugins you integrate into your site Run tests automatically by using a Continuous Integration environment Use TDD to build a REST API with a front-end Ajax interface