System Level Analysis And Design Under Uncertainty


Download System Level Analysis And Design Under Uncertainty PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get System Level Analysis And Design Under Uncertainty book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

System-Level Analysis and Design under Uncertainty


System-Level Analysis and Design under Uncertainty

Author: Ivan Ukhov

language: en

Publisher: Linköping University Electronic Press

Release Date: 2017-11-16


DOWNLOAD





One major problem for the designer of electronic systems is the presence of uncertainty, which is due to phenomena such as process and workload variation. Very often, uncertainty is inherent and inevitable. If ignored, it can lead to degradation of the quality of service in the best case and to severe faults or burnt silicon in the worst case. Thus, it is crucial to analyze uncertainty and to mitigate its damaging consequences by designing electronic systems in such a way that they effectively and efficiently take uncertainty into account. We begin by considering techniques for deterministic system-level analysis and design of certain aspects of electronic systems. These techniques do not take uncertainty into account, but they serve as a solid foundation for those that do. Our attention revolves primarily around power and temperature, as they are of central importance for attaining robustness and energy efficiency. We develop a novel approach to dynamic steady-state temperature analysis of electronic systems and apply it in the context of reliability optimization. We then proceed to develop techniques that address uncertainty. The first technique is designed to quantify the variability of process parameters, which is induced by process variation, across silicon wafers based on indirect and potentially incomplete and noisy measurements. The second technique is designed to study diverse system-level characteristics with respect to the variability originating from process variation. In particular, it allows for analyzing transient temperature profiles as well as dynamic steady-state temperature profiles of electronic systems. This is illustrated by considering a problem of design-space exploration with probabilistic constraints related to reliability. The third technique that we develop is designed to efficiently tackle the case of sources of uncertainty that are less regular than process variation, such as workload variation. This technique is exemplified by analyzing the effect that workload units with uncertain processing times have on the timing-, power-, and temperature-related characteristics of the system under consideration. We also address the issue of runtime management of electronic systems that are subject to uncertainty. In this context, we perform an early investigation of the utility of advanced prediction techniques for the purpose of finegrained long-range forecasting of resource usage in large computer systems. All the proposed techniques are assessed by extensive experimental evaluations, which demonstrate the superior performance of our approaches to analysis and design of electronic systems compared to existing techniques.

System-Level Design of GPU-Based Embedded Systems


System-Level Design of GPU-Based Embedded Systems

Author: Arian Maghazeh

language: en

Publisher: Linköping University Electronic Press

Release Date: 2018-12-07


DOWNLOAD





Modern embedded systems deploy several hardware accelerators, in a heterogeneous manner, to deliver high-performance computing. Among such devices, graphics processing units (GPUs) have earned a prominent position by virtue of their immense computing power. However, a system design that relies on sheer throughput of GPUs is often incapable of satisfying the strict power- and time-related constraints faced by the embedded systems. This thesis presents several system-level software techniques to optimize the design of GPU-based embedded systems under various graphics and non-graphics applications. As compared to the conventional application-level optimizations, the system-wide view of our proposed techniques brings about several advantages: First, it allows for fully incorporating the limitations and requirements of the various system parts in the design process. Second, it can unveil optimization opportunities through exposing the information flow between the processing components. Third, the techniques are generally applicable to a wide range of applications with similar characteristics. In addition, multiple system-level techniques can be combined together or with application-level techniques to further improve the performance. We begin by studying some of the unique attributes of GPU-based embedded systems and discussing several factors that distinguish the design of these systems from that of the conventional high-end GPU-based systems. We then proceed to develop two techniques that address an important challenge in the design of GPU-based embedded systems from different perspectives. The challenge arises from the fact that GPUs require a large amount of workload to be present at runtime in order to deliver a high throughput. However, for some embedded applications, collecting large batches of input data requires an unacceptable waiting time, prompting a trade-off between throughput and latency. We also develop an optimization technique for GPU-based applications to address the memory bottleneck issue by utilizing the GPU L2 cache to shorten data access time. Moreover, in the area of graphics applications, and in particular with a focus on mobile games, we propose a power management scheme to reduce the GPU power consumption by dynamically adjusting the display resolution, while considering the user's visual perception at various resolutions. We also discuss the collective impact of the proposed techniques in tackling the design challenges of emerging complex systems. The proposed techniques are assessed by real-life experimentations on GPU-based hardware platforms, which demonstrate the superior performance of our approaches as compared to the state-of-the-art techniques.

Design, Analysis and Test of Logic Circuits Under Uncertainty


Design, Analysis and Test of Logic Circuits Under Uncertainty

Author: Smita Krishnaswamy

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-09-21


DOWNLOAD





Logic circuits are becoming increasingly susceptible to probabilistic behavior caused by external radiation and process variation. In addition, inherently probabilistic quantum- and nano-technologies are on the horizon as we approach the limits of CMOS scaling. Ensuring the reliability of such circuits despite the probabilistic behavior is a key challenge in IC design---one that necessitates a fundamental, probabilistic reformulation of synthesis and testing techniques. This monograph will present techniques for analyzing, designing, and testing logic circuits with probabilistic behavior.