Structures On Different Time Scales

Download Structures On Different Time Scales PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Structures On Different Time Scales book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Structures on Different Time Scales

Author: Theo Woike
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2018-03-05
Volume 1 of this work presents theory and methods to study the structure of condensed matter on different time scales. The authors cover the structure analysis by X-ray diffraction methods from crystalline to amorphous materials, from static-relaxed averaged structures to short-lived electronically excited structures, including detailed descriptions of the time-resolved experimental methods. Complementary, an overview of the theoretical description of condensed matter by static and time-dependent density functional theory is given, starting from the fundamental quantities that can be obtained by these methods through to the recent challenges in the description of time dependent phenomena such as optical excitations. Contents Static structural analysis of condensed matter: from single-crystal to amorphous DFT calculations of solids in the ground state TDDFT, excitations, and spectroscopy Time-resolved structural analysis: probing condensed matter in motion Ultrafast science
Timescales

Author: Bethany Wiggin
language: en
Publisher: U of Minnesota Press
Release Date: 2020-01-05
Humanists, scientists, and artists collaborate to address the disjunctive temporalities of ecological crisis In 2016, Antarctica’s Totten Glacier, formed some 34 million years ago, detached from its bedrock, melted from the bottom by warming ocean waters. For the editors of Timescales, this event captures the disjunctive temporalities of our era’s—the Anthropocene’s—ecological crises: the rapid and accelerating degradation of our planet’s life-supporting environment established slowly over millennia. They contend that, to represent and respond to these crises (i.e., climate change, rising sea levels, ocean acidification, species extinction, and biodiversity loss) requires reframing time itself, making more visible the relationship between past, present, and future, and between a human life span and the planet’s. Timescales’ collection of lively and thought-provoking essays puts oceanographers, geophysicists, geologists, and anthropologists into conversation with literary scholars, art historians, and archaeologists. Together forging new intellectual spaces, they explore the relationship between geological deep time and historical particularity, between ecological crises and cultural expression, between environmental policy and social constructions, between restoration ecology and future imaginaries, and between constructive pessimism and radical (and actionable) hope. Interspersed among these essays are three complementary “etudes,” in which artists describe experimental works that explore the various timescales of ecological crisis. Contributors: Jason Bell, Harvard Law School; Iemanjá Brown, College of Wooster; Beatriz Cortez, California State U, Northridge; Wai Chee Dimock, Yale U; Jane E. Dmochowski, U of Pennsylvania; David A. D. Evans, Yale U; Kate Farquhar; Marcia Ferguson, U of Pennsylvania; Ömür Harmanşah, U of Illinois at Chicago; Troy Herion; Mimi Lien; Mary Mattingly; Paul Mitchell, U of Pennsylvania; Frank Pavia, California Institute of Technology; Dan Rothenberg; Jennifer E. Telesca, Pratt Institute; Charles M. Tung, Seattle U.
Multiple Time Scale Dynamics

This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.