Structure Function


Download Structure Function PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Structure Function book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

From Protein Structure to Function with Bioinformatics


From Protein Structure to Function with Bioinformatics

Author: Daniel John Rigden

language: en

Publisher: Springer Science & Business Media

Release Date: 2008-12-11


DOWNLOAD





Proteins lie at the heart of almost all biological processes and have an incredibly wide range of activities. Central to the function of all proteins is their ability to adopt, stably or sometimes transiently, structures that allow for interaction with other molecules. An understanding of the structure of a protein can therefore lead us to a much improved picture of its molecular function. This realisation has been a prime motivation of recent Structural Genomics projects, involving large-scale experimental determination of protein structures, often those of proteins about which little is known of function. These initiatives have, in turn, stimulated the massive development of novel methods for prediction of protein function from structure. Since model structures may also take advantage of new function prediction algorithms, the first part of the book deals with the various ways in which protein structures may be predicted or inferred, including specific treatment of membrane and intrinsically disordered proteins. A detailed consideration of current structure-based function prediction methodologies forms the second part of this book, which concludes with two chapters, focusing specifically on case studies, designed to illustrate the real-world application of these methods. With bang up-to-date texts from world experts, and abundant links to publicly available resources, this book will be invaluable to anyone who studies proteins and the endlessly fascinating relationship between their structure and function.

Viral Membrane Proteins: Structure, Function, and Drug Design


Viral Membrane Proteins: Structure, Function, and Drug Design

Author: Wolfgang B. Fischer

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-08-02


DOWNLOAD





In Viral Membrane Proteins: Structure, Function, and Drug Design, Wolfgang Fischer summarizes the current structural and functional knowledge of membrane proteins encoded by viruses. In addition, contributors to the book address questions about proteins as potential drug targets. The range of information covered includes signal proteins, ion channels, and fusion proteins. This book has a place in the libraries of researchers and scientists in a wide array of fields, including protein chemistry, molecular biophysics, pharmaceutical science and research, bioanotechnology, molecular biology, and biochemistry.

Structure, function, and plasticity of hippocampal dentate gyrus microcircuits


Structure, function, and plasticity of hippocampal dentate gyrus microcircuits

Author: Peter Jonas

language: en

Publisher: Frontiers Media SA

Release Date: 2015-02-13


DOWNLOAD





The hippocampus mediates several higher brain functions, such as learning, memory, and spatial coding. The input region of the hippocampus, the dentate gyrus, plays a critical role in these processes. Several lines of evidence suggest that the dentate gyrus acts as a preprocessor of incoming information, preparing it for subsequent processing in CA3. For example, the dentate gyrus converts input from the entorhinal cortex, where cells have multiple spatial fields, into the spatially more specific place cell activity characteristic of the CA3 region. Furthermore, the dentate gyrus is involved in pattern separation, transforming relatively similar input patterns into substantially different output patterns. Finally, the dentate gyrus produces a very sparse coding scheme in which only a very small fraction of neurons are active at any one time. How are these unique functions implemented at the level of cells and synapses? Dentate gyrus granule cells receive excitatory neuron input from the entorhinal cortex and send excitatory output to the hippocampal CA3 region via the mossy fibers. Furthermore, several types of GABAergic interneurons are present in this region, providing inhibitory control over granule cell activity via feedback and feedforward inhibition. Additionally, hilar mossy cells mediate an excitatory loop, receiving powerful input from a small number of granule cells and providing highly distributed excitatory output to a large number of granule cells. Finally, the dentate gyrus is one of the few brain regions exhibiting adult neurogenesis. Thus, new neurons are generated and functionally integrated throughout life. How these specific cellular and synaptic properties contribute to higher brain functions remains unclear. One way to understand these properties of the dentate gyrus is to try to integrate experimental data into models, following the famous Hopfield quote: “Build it, and you understand it.” However, when trying this, one faces two major challenges. First, hard quantitative data about cellular properties, structural connectivity, and functional properties of synapses are lacking. Second, the number of individual neurons and synapses to be represented in the model is huge. For example, the dentate gyrus contains ~1 million granule cells in rodents, and ~10 million in humans. Thus, full scale models will be complex and computationally demanding. In this Frontiers Research Topic, we collect important information about cells, synapses, and microcircuit elements of the dentate gyrus. We have put together a combination of original research articles, review articles, and a methods article. We hope that the collected information will be useful for both experimentalists and modelers. We also hope that the papers will be interesting beyond the small world of “dentology,” i.e., for scientists working on other brain areas. Ideally, the dentate gyrus may serve as a blueprint, helping neuroscientists to define strategies to analyze network organization of other brain regions.