Machine Learning With Scala Quick Start Guide

Download Machine Learning With Scala Quick Start Guide PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning With Scala Quick Start Guide book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Machine Learning with Scala Quick Start Guide

Author: Md. Rezaul Karim
language: en
Publisher: Packt Publishing Ltd
Release Date: 2019-04-30
Supervised and unsupervised machine learning made easy in Scala with this quick-start guide. Key FeaturesConstruct and deploy machine learning systems that learn from your data and give accurate predictionsUnleash the power of Spark ML along with popular machine learning algorithms to solve complex tasks in Scala.Solve hands-on problems by combining popular neural network architectures such as LSTM and CNN using Scala with DeepLearning4j libraryBook Description Scala is a highly scalable integration of object-oriented nature and functional programming concepts that make it easy to build scalable and complex big data applications. This book is a handy guide for machine learning developers and data scientists who want to develop and train effective machine learning models in Scala. The book starts with an introduction to machine learning, while covering deep learning and machine learning basics. It then explains how to use Scala-based ML libraries to solve classification and regression problems using linear regression, generalized linear regression, logistic regression, support vector machine, and Naïve Bayes algorithms. It also covers tree-based ensemble techniques for solving both classification and regression problems. Moving ahead, it covers unsupervised learning techniques, such as dimensionality reduction, clustering, and recommender systems. Finally, it provides a brief overview of deep learning using a real-life example in Scala. What you will learnGet acquainted with JVM-based machine learning libraries for Scala such as Spark ML and Deeplearning4jLearn RDDs, DataFrame, and Spark SQL for analyzing structured and unstructured dataUnderstand supervised and unsupervised learning techniques with best practices and pitfallsLearn classification and regression analysis with linear regression, logistic regression, Naïve Bayes, support vector machine, and tree-based ensemble techniques Learn effective ways of clustering analysis with dimensionality reduction techniquesLearn recommender systems with collaborative filtering approachDelve into deep learning and neural network architecturesWho this book is for This book is for machine learning developers looking to train machine learning models in Scala without spending too much time and effort. Some fundamental knowledge of Scala programming and some basics of statistics and linear algebra is all you need to get started with this book.
Machine Learning with Apache Spark Quick Start Guide

Author: Jillur Quddus
language: en
Publisher: Packt Publishing Ltd
Release Date: 2018-12-26
Combine advanced analytics including Machine Learning, Deep Learning Neural Networks and Natural Language Processing with modern scalable technologies including Apache Spark to derive actionable insights from Big Data in real-time Key FeaturesMake a hands-on start in the fields of Big Data, Distributed Technologies and Machine LearningLearn how to design, develop and interpret the results of common Machine Learning algorithmsUncover hidden patterns in your data in order to derive real actionable insights and business valueBook Description Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently. But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it? The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data. What you will learnUnderstand how Spark fits in the context of the big data ecosystemUnderstand how to deploy and configure a local development environment using Apache SparkUnderstand how to design supervised and unsupervised learning modelsBuild models to perform NLP, deep learning, and cognitive services using Spark ML librariesDesign real-time machine learning pipelines in Apache SparkBecome familiar with advanced techniques for processing a large volume of data by applying machine learning algorithmsWho this book is for This book is aimed at Business Analysts, Data Analysts and Data Scientists who wish to make a hands-on start in order to take advantage of modern Big Data technologies combined with Advanced Analytics.
Scala for Machine Learning

Are you curious about AI? All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book!