Structural Equation Modeling Using R Sas


Download Structural Equation Modeling Using R Sas PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Structural Equation Modeling Using R Sas book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Structural Equation Modeling Using R/SAS


Structural Equation Modeling Using R/SAS

Author: Ding-Geng Chen

language: en

Publisher: CRC Press

Release Date: 2023-08-21


DOWNLOAD





There has been considerable attention to making the methodologies of structural equation modeling available to researchers, practitioners, and students along with commonly used software. Structural Equation Modelling Using R/SAS aims to bring it all together to provide a concise point-of-reference for the most commonly used structural equation modeling from the fundamental level to the advanced level. This book is intended to contribute to the rapid development in structural equation modeling and its applications to real-world data. Straightforward explanations of the statistical theory and models related to structural equation models are provided, using a compilation of a variety of publicly available data, to provide an illustration of data analytics in a step-by-step fashion using commonly used statistical software of R and SAS. This book is appropriate for anyone who is interested in learning and practicing structural equation modeling, especially in using R and SAS. It is useful for applied statisticians, data scientists and practitioners, applied statistical analysts and scientists in public health, and academic researchers and graduate students in statistics, whilst also being of use to R&D professionals/practitioners in industry and governmental agencies. Key Features: Extensive compilation of commonly used structural equation models and methods from fundamental to advanced levels Straightforward explanations of the theory related to the structural equation models Compilation of a variety of publicly available data Step-by-step illustrations of data analysis using commonly used statistical software R and SAS Data and computer programs are available for readers to replicate and implement the new methods to better understand the book contents and for future applications Handbook for applied statisticians and practitioners

A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling


A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling

Author: Larry Hatcher

language: en

Publisher: SAS Institute

Release Date: 2013-03-01


DOWNLOAD





Annotation Structural equation modeling (SEM) has become one of the most important statistical procedures in the social and behavioral sciences. This easy-to-understand guide makes SEM accessible to all userseven those whose training in statistics is limited or who have never used SAS. It gently guides users through the basics of using SAS and shows how to perform some of the most sophisticated data-analysis procedures used by researchers: exploratory factor analysis, path analysis, confirmatory factor analysis, and structural equation modeling. It shows how to perform analyses with user-friendly PROC CALIS, and offers solutions for problems often encountered in real-world research. This second edition contains new material on sample-size estimation for path analysis and structural equation modeling. In a single user-friendly volume, students and researchers will find all the information they need in order to master SAS basics before moving on to factor analysis, path analysis, and other advanced statistical procedures.

Growth Modeling


Growth Modeling

Author: Kevin J. Grimm

language: en

Publisher: Guilford Publications

Release Date: 2016-10-17


DOWNLOAD





Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.


Recent Search