Stochastic Versus Fuzzy Approaches To Multiobjective Mathematical Programming Under Uncertainty


Download Stochastic Versus Fuzzy Approaches To Multiobjective Mathematical Programming Under Uncertainty PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Versus Fuzzy Approaches To Multiobjective Mathematical Programming Under Uncertainty book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty


Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty

Author: Shi-Yu Huang

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





Operations Research is a field whose major contribution has been to propose a rigorous fonnulation of often ill-defmed problems pertaining to the organization or the design of large scale systems, such as resource allocation problems, scheduling and the like. While this effort did help a lot in understanding the nature of these problems, the mathematical models have proved only partially satisfactory due to the difficulty in gathering precise data, and in formulating objective functions that reflect the multi-faceted notion of optimal solution according to human experts. In this respect linear programming is a typical example of impressive achievement of Operations Research, that in its detenninistic fonn is not always adapted to real world decision-making : everything must be expressed in tenns of linear constraints ; yet the coefficients that appear in these constraints may not be so well-defined, either because their value depends upon other parameters (not accounted for in the model) or because they cannot be precisely assessed, and only qualitative estimates of these coefficients are available. Similarly the best solution to a linear programming problem may be more a matter of compromise between various criteria rather than just minimizing or maximizing a linear objective function. Lastly the constraints, expressed by equalities or inequalities between linear expressions, are often softer in reality that what their mathematical expression might let us believe, and infeasibility as detected by the linear programming techniques can often been coped with by making trade-offs with the real world.

Fuzzy Stochastic Multiobjective Programming


Fuzzy Stochastic Multiobjective Programming

Author: Masatoshi Sakawa

language: en

Publisher: Springer

Release Date: 2013-04-19


DOWNLOAD





Although studies on multiobjective mathematical programming under uncertainty have been accumulated and several books on multiobjective mathematical programming under uncertainty have been published (e.g., Stancu-Minasian (1984); Slowinski and Teghem (1990); Sakawa (1993); Lai and Hwang (1994); Sakawa (2000)), there seems to be no book which concerns both randomness of events related to environments and fuzziness of human judgments simultaneously in multiobjective decision making problems. In this book, the authors are concerned with introducing the latest advances in the field of multiobjective optimization under both fuzziness and randomness on the basis of the authors’ continuing research works. Special stress is placed on interactive decision making aspects of fuzzy stochastic multiobjective programming for human-centered systems under uncertainty in most realistic situations when dealing with both fuzziness and randomness. Organization of each chapter is briefly summarized as follows: Chapter 2 is devoted to mathematical preliminaries, which will be used throughout the remainder of the book. Starting with basic notions and methods of multiobjective programming, interactive fuzzy multiobjective programming as well as fuzzy multiobjective programming is outlined. In Chapter 3, by considering the imprecision of decision maker’s (DM’s) judgment for stochastic objective functions and/or constraints in multiobjective problems, fuzzy multiobjective stochastic programming is developed. In Chapter 4, through the consideration of not only the randomness of parameters involved in objective functions and/or constraints but also the experts’ ambiguous understanding of the realized values of the random parameters, multiobjective programming problems with fuzzy random variables are formulated. In Chapter 5, for resolving conflict of decision making problems in hierarchical managerial or public organizations where there exist two DMs who have different priorities in making decisions, two-level programming problems are discussed. Finally, Chapter 6 outlines some future research directions.

Fuzzy Sets and Interactive Multiobjective Optimization


Fuzzy Sets and Interactive Multiobjective Optimization

Author: Masatoshi Sakawa

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-21


DOWNLOAD





The main characteristics of the real-world decision-making problems facing humans today are multidimensional and have multiple objectives including eco nomic, environmental, social, and technical ones. Hence, it seems natural that the consideration of many objectives in the actual decision-making process re quires multiobjective approaches rather than single-objective. One ofthe major systems-analytic multiobjective approaches to decision-making under constraints is multiobjective optimization as a generalization of traditional single-objective optimization. Although multiobjective optimization problems differ from single objective optimization problems only in the plurality of objective functions, it is significant to realize that multiple objectives are often noncom mensurable and conflict with each other in multiobjective optimization problems. With this ob servation, in multiobjective optimization, the notion of Pareto optimality or effi ciency has been introduced instead of the optimality concept for single-objective optimization. However, decisions with Pareto optimality or efficiency are not uniquely determined; the final decision must be selected from among the set of Pareto optimal or efficient solutions. Therefore, the question is, how does one find the preferred point as a compromise or satisficing solution with rational pro cedure? This is the starting point of multiobjective optimization. To be more specific, the aim is to determine how one derives a compromise or satisficing so lution of a decision maker (DM), which well represents the subjective judgments, from a Pareto optimal or an efficient solution set.