Fuzzy Sets And Interactive Multiobjective Optimization


Download Fuzzy Sets And Interactive Multiobjective Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fuzzy Sets And Interactive Multiobjective Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Fuzzy Sets and Interactive Multiobjective Optimization


Fuzzy Sets and Interactive Multiobjective Optimization

Author: Masatoshi Sakawa

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-21


DOWNLOAD





The main characteristics of the real-world decision-making problems facing humans today are multidimensional and have multiple objectives including eco nomic, environmental, social, and technical ones. Hence, it seems natural that the consideration of many objectives in the actual decision-making process re quires multiobjective approaches rather than single-objective. One ofthe major systems-analytic multiobjective approaches to decision-making under constraints is multiobjective optimization as a generalization of traditional single-objective optimization. Although multiobjective optimization problems differ from single objective optimization problems only in the plurality of objective functions, it is significant to realize that multiple objectives are often noncom mensurable and conflict with each other in multiobjective optimization problems. With this ob servation, in multiobjective optimization, the notion of Pareto optimality or effi ciency has been introduced instead of the optimality concept for single-objective optimization. However, decisions with Pareto optimality or efficiency are not uniquely determined; the final decision must be selected from among the set of Pareto optimal or efficient solutions. Therefore, the question is, how does one find the preferred point as a compromise or satisficing solution with rational pro cedure? This is the starting point of multiobjective optimization. To be more specific, the aim is to determine how one derives a compromise or satisficing so lution of a decision maker (DM), which well represents the subjective judgments, from a Pareto optimal or an efficient solution set.

Multi-Objective Programming and Goal Programming


Multi-Objective Programming and Goal Programming

Author: Tetsuzo Tanino

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-11


DOWNLOAD





This volume constitutes the proceedings of the Fifth International Conference on Multi-Objective Programming and Goal Programming: Theory & Appli cations (MOPGP'02) held in Nara, Japan on June 4-7, 2002. Eighty-two people from 16 countries attended the conference and 78 papers (including 9 plenary talks) were presented. MOPGP is an international conference within which researchers and prac titioners can meet and learn from each other about the recent development in multi-objective programming and goal programming. The participants are from different disciplines such as Optimization, Operations Research, Math ematical Programming and Multi-Criteria Decision Aid, whose common in terest is in multi-objective analysis. The first MOPGP Conference was held at Portsmouth, United Kingdom, in 1994. The subsequent conferenes were held at Torremolinos, Spain in 1996, at Quebec City, Canada in 1998, and at Katowice, Poland in 2000. The fifth conference was held at Nara, which was the capital of Japan for more than seventy years in the eighth century. During this Nara period the basis of Japanese society, or culture established itself. Nara is a beautiful place and has a number of historic monuments in the World Heritage List. The members of the International Committee of MOPGP'02 were Dylan Jones, Pekka Korhonen, Carlos Romero, Ralph Steuer and Mehrdad Tamiz.

Genetic Algorithms and Fuzzy Multiobjective Optimization


Genetic Algorithms and Fuzzy Multiobjective Optimization

Author: Masatoshi Sakawa

language: en

Publisher: Springer Science & Business Media

Release Date: 2002


DOWNLOAD





Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.