Stochastic Models For Geodesy And Geoinformation Science

Download Stochastic Models For Geodesy And Geoinformation Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Models For Geodesy And Geoinformation Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Models for Geodesy and Geoinformation Science

In geodesy and geoinformation science, as well as in many other technical disciplines, it is often not possible to directly determine the desired target quantities. Therefore, the unknown parameters must be linked with the measured values by a mathematical model which consists of the functional and the stochastic models. The functional model describes the geometrical-physical relationship between the measurements and the unknown parameters. This relationship is sufficiently well known for most applications. With regard to the stochastic model, two problem domains of fundamental importance arise: 1. How can stochastic models be set up as realistically as possible for the various geodetic observation methods and sensor systems? 2. How can the stochastic information be adequately considered in appropriate least squares adjustment models? Further questions include the interpretation of the stochastic properties of the computed target values with regard to precision and reliability and the use of the results for the detection of outliers in the input data (measurements). In this Special Issue, current research results on these general questions are presented in ten peer-reviewed articles. The basic findings can be applied to all technical scientific fields where measurements are used for the determination of parameters to describe geometric or physical phenomena.
Stochastic Models for Geodesy and Geoinformation Science

In geodesy and geoinformation science, as well as in many other technical disciplines, it is often not possible to directly determine the desired target quantities. Therefore, the unknown parameters must be linked with the measured values by a mathematical model which consists of the functional and the stochastic models. The functional model describes the geometrical–physical relationship between the measurements and the unknown parameters. This relationship is sufficiently well known for most applications. With regard to the stochastic model, two problem domains of fundamental importance arise: 1. How can stochastic models be set up as realistically as possible for the various geodetic observation methods and sensor systems? 2. How can the stochastic information be adequately considered in appropriate least squares adjustment models? Further questions include the interpretation of the stochastic properties of the computed target values with regard to precision and reliability and the use of the results for the detection of outliers in the input data (measurements). In this Special Issue, current research results on these general questions are presented in ten peer-reviewed articles. The basic findings can be applied to all technical scientific fields where measurements are used for the determination of parameters to describe geometric or physical phenomena.
Mathematical Geosciences

This second edition of Mathematical Geosciences book adds five new topics: Solution equations with uncertainty, which proposes two novel methods for solving nonlinear geodetic equations as stochastic variables when the parameters of these equations have uncertainty characterized by probability distribution. The first method, an algebraic technique, partly employs symbolic computations and is applicable to polynomial systems having different uncertainty distributions of the parameters. The second method, a numerical technique, uses stochastic differential equation in Ito form; Nature Inspired Global Optimization where Meta-heuristic algorithms are based on natural phenomenon such as Particle Swarm Optimization. This approach simulates, e.g., schools of fish or flocks of birds, and is extended through discussion of geodetic applications. Black Hole Algorithm, which is based on the black hole phenomena is added and a new variant of the algorithm code is introduced and illustrated based on examples; The application of the Gröbner Basis to integer programming based on numeric symbolic computation is introduced and illustrated by solving some standard problems; An extension of the applications of integer programming solving phase ambiguity in Global Navigation Satellite Systems (GNSSs) is considered as a global quadratic mixed integer programming task, which can be transformed into a pure integer problem with a given digit of accuracy. Three alternative algorithms are suggested, two of which are based on local and global linearization via McCormic Envelopes; and Machine learning techniques (MLT) that offer effective tools for stochastic process modelling. The Stochastic Modelling section is extended by the stochastic modelling via MLT and their effectiveness is compared with that of the modelling via stochastic differential equations (SDE). Mixing MLT with SDE also known as frequently Neural Differential Equations is also introduced and illustrated by an image classification via a regression problem.