Stochastic Methods In Economics And Finance

Download Stochastic Methods In Economics And Finance PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Methods In Economics And Finance book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Methods in Economics and Finance

Theory and application of a variety of mathematical techniques in economics are presented in this volume. Topics discussed include: martingale methods, stochastic processes, optimal stopping, the modeling of uncertainty using a Wiener process, Itô's Lemma as a tool of stochastic calculus, and basic facts about stochastic differential equations. The notion of stochastic ability and the methods of stochastic control are discussed, and their use in economic theory and finance is illustrated with numerous applications. The applications covered include: futures, pricing, job search, stochastic capital theory, stochastic economic growth, the rational expectations hypothesis, a stochastic macroeconomic model, competitive firm under price uncertainty, the Black-Scholes option pricing theory, optimum consumption and portfolio rules, demand for index bonds, term structure of interest rates, the market risk adjustment in project valuation, demand for cash balances and an asset pricing model.
Stochastic Processes with Applications to Finance

Financial engineering has been proven to be a useful tool for risk management, but using the theory in practice requires a thorough understanding of the risks and ethical standards involved. Stochastic Processes with Applications to Finance, Second Edition presents the mathematical theory of financial engineering using only basic mathematical tools
Mathematical Modeling in Economics and Finance: Probability, Stochastic Processes, and Differential Equations

Author: Steven R. Dunbar
language: en
Publisher: American Mathematical Soc.
Release Date: 2019-04-03
Mathematical Modeling in Economics and Finance is designed as a textbook for an upper-division course on modeling in the economic sciences. The emphasis throughout is on the modeling process including post-modeling analysis and criticism. It is a textbook on modeling that happens to focus on financial instruments for the management of economic risk. The book combines a study of mathematical modeling with exposure to the tools of probability theory, difference and differential equations, numerical simulation, data analysis, and mathematical analysis. Students taking a course from Mathematical Modeling in Economics and Finance will come to understand some basic stochastic processes and the solutions to stochastic differential equations. They will understand how to use those tools to model the management of financial risk. They will gain a deep appreciation for the modeling process and learn methods of testing and evaluation driven by data. The reader of this book will be successfully positioned for an entry-level position in the financial services industry or for beginning graduate study in finance, economics, or actuarial science. The exposition in Mathematical Modeling in Economics and Finance is crystal clear and very student-friendly. The many exercises are extremely well designed. Steven Dunbar is Professor Emeritus of Mathematics at the University of Nebraska and he has won both university-wide and MAA prizes for extraordinary teaching. Dunbar served as Director of the MAA's American Mathematics Competitions from 2004 until 2015. His ability to communicate mathematics is on full display in this approachable, innovative text.