Statistical Analysis


Download Statistical Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

An Introduction to Statistical Learning


An Introduction to Statistical Learning

Author: Gareth James

language: en

Publisher: Springer Nature

Release Date: 2023-06-30


DOWNLOAD





An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Statistical Methods Of Analysis


Statistical Methods Of Analysis

Author: Chin Long Chiang

language: en

Publisher: World Scientific Publishing Company

Release Date: 2003-10-01


DOWNLOAD





This textbook systematically presents fundamental methods of statistical analysis: from probability and statistical distributions, through basic concepts of statistical inference, to a collection of methods of analysis useful for scientific research. It is rich in tables, diagrams, and examples, in addition to theoretical justification of the methods of analysis introduced. Each chapter has a section entitled “Exercises and Problems” to accompany the text. There are altogether about 300 exercises and problems, answers to the selected problems are given. A section entitled “Proof of the Results in This Chapter” in each chapter provides interested readers with material for further study.

Statistical Analysis of Network Data with R


Statistical Analysis of Network Data with R

Author: Eric D. Kolaczyk

language: en

Publisher: Springer

Release Date: 2014-05-22


DOWNLOAD





Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).