Spectral Geometry Of Graphs


Download Spectral Geometry Of Graphs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spectral Geometry Of Graphs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Spectral Geometry of Graphs


Spectral Geometry of Graphs

Author: Pavel Kurasov

language: en

Publisher: Springer Nature

Release Date: 2023-11-07


DOWNLOAD





This open access book gives a systematic introduction into the spectral theory of differential operators on metric graphs. Main focus is on the fundamental relations between the spectrum and the geometry of the underlying graph. The book has two central themes: the trace formula and inverse problems. The trace formula is relating the spectrum to the set of periodic orbits and is comparable to the celebrated Selberg and Chazarain-Duistermaat-Guillemin-Melrose trace formulas. Unexpectedly this formula allows one to construct non-trivial crystalline measures and Fourier quasicrystals solving one of the long-standing problems in Fourier analysis. The remarkable story of this mathematical odyssey is presented in the first part of the book. To solve the inverse problem for Schrödinger operators on metric graphs the magnetic boundary control method is introduced. Spectral data depending on the magnetic flux allow one to solve the inverse problem in full generality, this means to reconstruct not only the potential on a given graph, but also the underlying graph itself and the vertex conditions. The book provides an excellent example of recent studies where the interplay between different fields like operator theory, algebraic geometry and number theory, leads to unexpected and sound mathematical results. The book is thought as a graduate course book where every chapter is suitable for a separate lecture and includes problems for home studies. Numerous illuminating examples make it easier to understand new concepts and develop the necessary intuition for further studies.

Spectral Graph Theory


Spectral Graph Theory

Author: Fan R. K. Chung

language: en

Publisher: American Mathematical Soc.

Release Date: 1997


DOWNLOAD





This text discusses spectral graph theory.

Graphs and Discrete Dirichlet Spaces


Graphs and Discrete Dirichlet Spaces

Author: Matthias Keller

language: en

Publisher: Springer

Release Date: 2021-11-07


DOWNLOAD





The spectral geometry of infinite graphs deals with three major themes and their interplay: the spectral theory of the Laplacian, the geometry of the underlying graph, and the heat flow with its probabilistic aspects. In this book, all three themes are brought together coherently under the perspective of Dirichlet forms, providing a powerful and unified approach. The book gives a complete account of key topics of infinite graphs, such as essential self-adjointness, Markov uniqueness, spectral estimates, recurrence, and stochastic completeness. A major feature of the book is the use of intrinsic metrics to capture the geometry of graphs. As for manifolds, Dirichlet forms in the graph setting offer a structural understanding of the interaction between spectral theory, geometry and probability. For graphs, however, the presentation is much more accessible and inviting thanks to the discreteness of the underlying space, laying bare the main concepts while preserving the deep insights of the manifold case. Graphs and Discrete Dirichlet Spaces offers a comprehensive treatment of the spectral geometry of graphs, from the very basics to deep and thorough explorations of advanced topics. With modest prerequisites, the book can serve as a basis for a number of topics courses, starting at the undergraduate level.