Spectral Geometry And Inverse Scattering Theory

Download Spectral Geometry And Inverse Scattering Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spectral Geometry And Inverse Scattering Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Spectral Geometry and Inverse Scattering Theory

Inverse scattering problems are a vital subject for both theoretical and experimental studies and remain an active field of research in applied mathematics. This book provides a detailed presentation of typical setup of inverse scattering problems for time-harmonic acoustic, electromagnetic and elastic waves. Moreover, it provides systematical and in-depth discussion on an important class of geometrical inverse scattering problems, where the inverse problem aims at recovering the shape and location of a scatterer independent of its medium properties. Readers of this book will be exposed to a unified framework for analyzing a variety of geometrical inverse scattering problems from a spectral geometric perspective. This book contains both overviews of classical results and update-to-date information on latest developments from both a practical and theoretical point of view. It can be used as an advanced graduate textbook in universities or as a reference source for researchers in acquiring the state-of-the-art results in inverse scattering theory and their potential applications.
Inverse Scattering Theory and Transmission Eigenvalues

Inverse scattering theory is a major theme of applied mathematics, and it has applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting particular problems in the development of efficient inversion algorithms. Although linearized models continue to play an important role in many applications, an increased need to focus on problems in which multiple scattering effects cannot be ignored has led to a central role for nonlinearity, and the possibility of collecting large amounts of data over limited regions of space means that the ill-posed nature of the inverse scattering problem has become a problem of central importance. Initial efforts to address the nonlinear and the ill-posed nature of the inverse scattering problem focused on nonlinear optimization methods. While efficient in many situations, strong a priori information is necessary for their implementation. This problem led to a qualitative approach to inverse scattering theory in which the amount of a priori information is drastically reduced, although at the expense of only obtaining limited information about the values of the constitutive parameters. This qualitative approach (the linear sampling method, the factorization method, the theory of transmission eigenvalues, etc.) is the theme of Inverse Scattering Theory and Transmission Eigenvalues. The authors begin with a basic introduction to the theory, then proceed to more recent developments, including a detailed discussion of the transmission eigenvalue problem; present the new generalized linear sampling method in addition to the well-known linear sampling and factorization methods; and in order to achieve clarification of presentation, focus on the inverse scattering problem for scalar homogeneous media.
Progress in Inverse Spectral Geometry

Most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t> O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* ®E), locally given by 00 K(x, y; t) = L>-IAk(~k ® 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.