Inverse Scattering Theory And Transmission Eigenvalues

Download Inverse Scattering Theory And Transmission Eigenvalues PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Inverse Scattering Theory And Transmission Eigenvalues book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Inverse Scattering Theory and Transmission Eigenvalues

Inverse scattering theory is a major theme of applied mathematics, and it has applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting particular problems in the development of efficient inversion algorithms. Although linearized models continue to play an important role in many applications, an increased need to focus on problems in which multiple scattering effects cannot be ignored has led to a central role for nonlinearity, and the possibility of collecting large amounts of data over limited regions of space means that the ill-posed nature of the inverse scattering problem has become a problem of central importance.? Initial efforts to address the nonlinear and the ill-posed nature of the inverse scattering problem focused on nonlinear optimization methods. While efficient in many situations, strong a priori information is necessary for their implementation. This problem led to a qualitative approach to inverse scattering theory in which the amount of a priori information is drastically reduced, although at the expense of only obtaining limited information about the values of the constitutive parameters. This qualitative approach (the linear sampling method, the factorization method, the theory of transmission eigenvalues, etc.) is the theme of Inverse Scattering Theory and Transmission Eigenvalues.? The authors begin with a basic introduction to the theory, then proceed to more recent developments, including a detailed discussion of the transmission eigenvalue problem; present the new generalized linear sampling method in addition to the well-known linear sampling and factorization methods; and in order to achieve clarification of presentation, focus on the inverse scattering problem for scalar homogeneous media.?
Inverse Scattering Theory and Transmission Eigenvalues

Inverse scattering theory is a major theme in applied mathematics, with applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting challenges in the development of efficient inversion algorithms. A further complication is that anisotropic materials cannot be uniquely determined from given scattering data. In the first edition of Inverse Scattering Theory and Transmission Eigenvalues, the authors discussed methods for determining the support of inhomogeneous media from measured far field data and the role of transmission eigenvalue problems in the mathematical development of these methods. In this second edition, three new chapters describe recent developments in inverse scattering theory. In particular, the authors explore the use of modified background media in the nondestructive testing of materials and methods for determining the modified transmission eigenvalues that arise in such applications from measured far field data. They also examine nonscattering wave numbers-a subset of transmission eigenvalues-using techniques taken from the theory of free boundary value problems for elliptic partial differential equations and discuss the dualism of scattering poles and transmission eigenvalues that has led to new methods for the numerical computation of scattering poles. This book will be of interest to research mathematicians and engineers and physicists working on problems in target identification. It will also be useful to advanced graduate students in many areas of applied mathematics.
Inverse Scattering Theory and Transmission Eigenvalues

Inverse scattering theory is a major theme in applied mathematics, with applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting challenges in the development of efficient inversion algorithms. A further complication is that anisotropic materials cannot be uniquely determined from given scattering data. In the first edition of Inverse Scattering Theory and Transmission Eigenvalues, the authors discussed methods for determining the support of inhomogeneous media from measured far field data and the role of transmission eigenvalue problems in the mathematical development of these methods. In this second edition, three new chapters describe recent developments in inverse scattering theory. In particular, the authors explore the use of modified background media in the nondestructive testing of materials and methods for determining the modified transmission eigenvalues that arise in such applications from measured far field data. They also examine nonscattering wave numbers—a subset of transmission eigenvalues—using techniques taken from the theory of free boundary value problems for elliptic partial differential equations and discuss the dualism of scattering poles and transmission eigenvalues that has led to new methods for the numerical computation of scattering poles. This book will be of interest to research mathematicians and engineers and physicists working on problems in target identification. It will also be useful to advanced graduate students in many areas of applied mathematics.