Spark Cookbook


Download Spark Cookbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spark Cookbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Spark Cookbook


Spark Cookbook

Author: Rishi Yadav

language: en

Publisher: Packt Publishing Ltd

Release Date: 2015-07-27


DOWNLOAD





By introducing in-memory persistent storage, Apache Spark eliminates the need to store intermediate data in filesystems, thereby increasing processing speed by up to 100 times. This book will focus on how to analyze large and complex sets of data. Starting with installing and configuring Apache Spark with various cluster managers, you will cover setting up development environments. You will then cover various recipes to perform interactive queries using Spark SQL and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will then focus on machine learning, including supervised learning, unsupervised learning, and recommendation engine algorithms. After mastering graph processing using GraphX, you will cover various recipes for cluster optimization and troubleshooting.

The Sparkpeople Cookbook


The Sparkpeople Cookbook

Author: Meg Galvin

language: en

Publisher: Hay House, Inc

Release Date: 2011-10-01


DOWNLOAD





From the team that brought you the New York Times bestseller The Spark This practical yet inspirational guide, which is based on the same easy, real-world principles as the SparkPeople program, takes the guesswork out of making delicious, healthy meals and losing weight-once and for all. Award-winning chef Meg Galvin and SparkRecipes editor Stepfanie Romine have paired up to create this collection of more than 160 satisfying, sustaining, and stress-free recipes that streamline your healthy-eating efforts. With a focus on real food, generous portions, and great flavor, these recipes are not part of a fad diet. They aren't about spending money on obscure ingredients, eliminating key components of a balanced diet, or slaving away for hours at the stove. They are about making smart choices and eating food you love to eat. But this is more than just a collection of recipes—it's an education. The SparkPeople philosophy has always been about encouraging people to achieve personal goals with the help and support of others. And this cookbook works in the just the same way. Along with the recipes, you'll find step-by-step how-tos about the healthiest, most taste-enhancing cooking techniques; lists of kitchen essentials; and simple ingredient swaps that maximize flavor, while cutting fat and calories, plus you'll read motivational SparkPeople success stories from real members who have used these recipes as part of their life-changing transformations. In addition, you'll find: • Results from the SparkPeople "Ditch the Diet" Taste Test, which proves that you don't have to eat tasteless food to lose weight. • 150 meal ideas and recipes that take 30 minutes or less to prepare—plus dozens of other meals for days when you have more time. • Two weeks of meal plans that include breakfast, lunch, dinner, and snacks. So whether you're a novice taking the first steps to improve your health or a seasoned cook just looking for new, healthy recipes to add to your repertoire, this cookbook is for you. Learn to love your food, lose the weight, and ditch the diet forever!

Apache Spark Deep Learning Cookbook


Apache Spark Deep Learning Cookbook

Author: Ahmed Sherif

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-07-13


DOWNLOAD





A solution-based guide to put your deep learning models into production with the power of Apache Spark Key Features Discover practical recipes for distributed deep learning with Apache Spark Learn to use libraries such as Keras and TensorFlow Solve problems in order to train your deep learning models on Apache Spark Book Description With deep learning gaining rapid mainstream adoption in modern-day industries, organizations are looking for ways to unite popular big data tools with highly efficient deep learning libraries. As a result, this will help deep learning models train with higher efficiency and speed. With the help of the Apache Spark Deep Learning Cookbook, you’ll work through specific recipes to generate outcomes for deep learning algorithms, without getting bogged down in theory. From setting up Apache Spark for deep learning to implementing types of neural net, this book tackles both common and not so common problems to perform deep learning on a distributed environment. In addition to this, you’ll get access to deep learning code within Spark that can be reused to answer similar problems or tweaked to answer slightly different problems. You will also learn how to stream and cluster your data with Spark. Once you have got to grips with the basics, you’ll explore how to implement and deploy deep learning models, such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) in Spark, using popular libraries such as TensorFlow and Keras. By the end of the book, you'll have the expertise to train and deploy efficient deep learning models on Apache Spark. What you will learn Set up a fully functional Spark environment Understand practical machine learning and deep learning concepts Apply built-in machine learning libraries within Spark Explore libraries that are compatible with TensorFlow and Keras Explore NLP models such as Word2vec and TF-IDF on Spark Organize dataframes for deep learning evaluation Apply testing and training modeling to ensure accuracy Access readily available code that may be reusable Who this book is for If you’re looking for a practical and highly useful resource for implementing efficiently distributed deep learning models with Apache Spark, then the Apache Spark Deep Learning Cookbook is for you. Knowledge of the core machine learning concepts and a basic understanding of the Apache Spark framework is required to get the best out of this book. Additionally, some programming knowledge in Python is a plus.