Solving Pdes In C

Download Solving Pdes In C PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Solving Pdes In C book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Solving PDEs in C++

In this much-expanded second edition, author Yair Shapira presents new applications and a substantial extension of the original object-oriented framework to make this popular and comprehensive book even easier to understand and use. It not only introduces the C and C++ programming languages, but also shows how to use them in the numerical solution of partial differential equations (PDEs). The book leads readers through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The high level of abstraction available in C++ is particularly useful in the implementation of complex mathematical objects, such as unstructured mesh, sparse matrix, and multigrid hierarchy, often used in numerical modeling. The well-debugged and tested code segments implement the numerical methods efficiently and transparently in a unified object-oriented approach.
Solving PDEs in C++

In this much-expanded second edition, author Yair Shapira presents new applications and a substantial extension of the original object-oriented framework to make this popular and comprehensive book even easier to understand and use. It not only introduces the C and C++ programming languages, but also shows how to use them in the numerical solution of partial differential equations (PDEs). New material in this edition includes new chapters on 3-D nonlinear applications and image processing applications; new sections on cryptography applications; and even more new sections, many including additional algorithms. The book leads readers through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The high level of abstraction available in C++ is particularly useful in the implementation of complex mathematical objects, such as unstructured mesh, sparse matrix, and multigrid hierarchy, often used in numerical modeling. The well-debugged and tested code segments implement the numerical methods efficiently and transparently in a unified object-oriented approach.
PETSc for Partial Differential Equations: Numerical Solutions in C and Python

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.