Solving Pdes In C


Download Solving Pdes In C PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Solving Pdes In C book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Solving PDEs in C++


Solving PDEs in C++

Author: Yair Shapira

language: en

Publisher: SIAM

Release Date: 2012-06-07


DOWNLOAD





In this much-expanded second edition, author Yair Shapira presents new applications and a substantial extension of the original object-oriented framework to make this popular and comprehensive book even easier to understand and use. It not only introduces the C and C++ programming languages, but also shows how to use them in the numerical solution of partial differential equations (PDEs). The book leads readers through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The high level of abstraction available in C++ is particularly useful in the implementation of complex mathematical objects, such as unstructured mesh, sparse matrix, and multigrid hierarchy, often used in numerical modeling. The well-debugged and tested code segments implement the numerical methods efficiently and transparently in a unified object-oriented approach.

Solving PDEs in C++


Solving PDEs in C++

Author: Yair Shapira

language: en

Publisher:

Release Date: 2012


DOWNLOAD





In this much-expanded second edition, author Yair Shapira presents new applications and a substantial extension of the original object-oriented framework to make this popular and comprehensive book even easier to understand and use. It not only introduces the C and C++ programming languages, but also shows how to use them in the numerical solution of partial differential equations (PDEs). New material in this edition includes new chapters on 3-D nonlinear applications and image processing applications; new sections on cryptography applications; and even more new sections, many including additional algorithms. The book leads readers through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The high level of abstraction available in C++ is particularly useful in the implementation of complex mathematical objects, such as unstructured mesh, sparse matrix, and multigrid hierarchy, often used in numerical modeling. The well-debugged and tested code segments implement the numerical methods efficiently and transparently in a unified object-oriented approach.

Solving Nonlinear Partial Differential Equations with Maple and Mathematica


Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Author: Inna Shingareva

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-07-24


DOWNLOAD





The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).