Social Sensing And Big Data Computing For Disaster Management

Download Social Sensing And Big Data Computing For Disaster Management PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Social Sensing And Big Data Computing For Disaster Management book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Social Sensing and Big Data Computing for Disaster Management

Social Sensing and Big Data Computing for Disaster Management captures recent advancements in leveraging social sensing and big data computing for supporting disaster management. Specifically, analysed within this book are some of the promises and pitfalls of social sensing data for disaster relevant information extraction, impact area assessment, population mapping, occurrence patterns, geographical disparities in social media use, and inclusion in larger decision support systems. Traditional data collection methods such as remote sensing and field surveying often fail to offer timely information during or immediately following disaster events. Social sensing enables all citizens to become part of a large sensor network which is low cost, more comprehensive, and always broadcasting situational awareness information. However, data collected with social sensing is often massive, heterogeneous, noisy, and unreliable in some aspects. It comes in continuous streams, and often lacks geospatial reference information. Together, these issues represent a grand challenge toward fully leveraging social sensing for emergency management decision making under extreme duress. Meanwhile, big data computing methods and technologies such as high-performance computing, deep learning, and multi-source data fusion become critical components of using social sensing to understand the impact of and response to the disaster events in a timely fashion. This book was originally published as a special issue of the International Journal of Digital Earth.
Social Sensing and Big Data Computing for Disaster Management

Social Sensing and Big Data Computing for Disaster Management captures recent advancements in leveraging social sensing and big data computing for supporting disaster management. Specifically, analysed within this book are some of the promises and pitfalls of social sensing data for disaster relevant information extraction, impact area assessment, population mapping, occurrence patterns, geographical disparities in social media use, and inclusion in larger decision support systems. Traditional data collection methods such as remote sensing and field surveying often fail to offer timely information during or immediately following disaster events. Social sensing enables all citizens to become part of a large sensor network which is low cost, more comprehensive, and always broadcasting situational awareness information. However, data collected with social sensing is often massive, heterogeneous, noisy, and unreliable in some aspects. It comes in continuous streams, and often lacks geospatial reference information. Together, these issues represent a grand challenge toward fully leveraging social sensing for emergency management decision making under extreme duress. Meanwhile, big data computing methods and technologies such as high-performance computing, deep learning, and multi-source data fusion become critical components of using social sensing to understand the impact of and response to the disaster events in a timely fashion. This book was originally published as a special issue of the International Journal of Digital Earth.
Artificial Intelligence: A Multidisciplinary Approach towards Teaching and Learning

Author: Tahmeena Khan
language: en
Publisher: Bentham Science Publishers
Release Date: 2024-11-19
Artificial Intelligence: A Multidisciplinary Approach towards Teaching and Learning explores the evolving role of AI in education, covering applications in fields such as bioinformatics, environmental science, physics, chemistry, economics, and language learning. Written by experts, this book provides a comprehensive overview of AI's integration into diverse subjects, offering insights into the future of AI in education and its potential to enhance academic research and pedagogy. Targeted at faculty, students, and professionals, the book addresses AI's role in blended learning environments and offers practical tools for educators seeking to incorporate AI into their teaching practices. Key Features: - Multidisciplinary exploration of AI in teaching and learning. - Practical tools and methodologies for educators. - Insights into AI-driven innovations in research. - Relevant to a broad audience, from students to professionals.