Simulation And Inference For Stochastic Processes With Yuima

Download Simulation And Inference For Stochastic Processes With Yuima PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Simulation And Inference For Stochastic Processes With Yuima book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Simulation and Inference for Stochastic Processes with YUIMA

The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA, COGARCH, and Point processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these processes have been originally proposed in physics and more recently in finance, they are becoming popular also in biology due to the fact the time course experimental data are now available. The YUIMA package, available on CRAN, can be freely downloaded and this companion book will make the user able to start his or her analysis from the first page.
Continuous-Parameter Time Series

Author: Peter J. Brockwell
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2024-07-22
This book provides a self-contained account of continuous-parameter time series, starting with second-order models. Integration with respect to orthogonal increment processes, spectral theory and linear prediction are treated in detail. Lévy-driven models are incorporated, extending coverage to allow for infinite variance, a variety of marginal distributions and sample paths having jumps. The necessary theory of Lévy processes and integration of deterministic functions with respect to these processes is developed at length. Special emphasis is given to the analysis of continuous-time ARMA processes.
Parameter Estimation in Stochastic Volatility Models

Author: Jaya P. N. Bishwal
language: en
Publisher: Springer Nature
Release Date: 2022-08-06
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.