Several Real Variables


Download Several Real Variables PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Several Real Variables book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Functions Of Several Real Variables


Functions Of Several Real Variables

Author: Martin Moskowitz

language: en

Publisher: World Scientific Publishing Company

Release Date: 2011-04-29


DOWNLOAD





This book begins with the basics of the geometry and topology of Euclidean space and continues with the main topics in the theory of functions of several real variables including limits, continuity, differentiation and integration. All topics and in particular, differentiation and integration, are treated in depth and with mathematical rigor. The classical theorems of differentiation and integration such as the Inverse and Implicit Function theorems, Lagrange's multiplier rule, Fubini's theorem, the change of variables formula, Green's, Stokes' and Gauss' theorems are proved in detail and many of them with novel proofs. The authors develop the theory in a logical sequence building one result upon the other, enriching the development with numerous explanatory remarks and historical footnotes. A number of well chosen illustrative examples and counter-examples clarify matters and teach the reader how to apply these results and solve problems in mathematics, the other sciences and economics.Each of the chapters concludes with groups of exercises and problems, many of them with detailed solutions while others with hints or final answers. More advanced topics, such as Morse's lemma, Sard's theorem , the Weierstrass approximation theorem, the Fourier transform, Vector fields on spheres, Brouwer's fixed point theorem, Whitney's embedding theorem, Picard's theorem, and Hermite polynomials are discussed in stared sections.

Functions of Several Variables


Functions of Several Variables

Author: Wendell Fleming

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





The purpose of this book is to give a systematic development of differential and integral calculus for functions of several variables. The traditional topics from advanced calculus are included: maxima and minima, chain rule, implicit function theorem, multiple integrals, divergence and Stokes's theorems, and so on. However, the treatment differs in several important respects from the traditional one. Vector notation is used throughout, and the distinction is maintained between n-dimensional euclidean space En and its dual. The elements of the Lebesgue theory of integrals are given. In place of the traditional vector analysis in £3, we introduce exterior algebra and the calculus of exterior differential forms. The formulas of vector analysis then become special cases of formulas about differential forms and integrals over manifolds lying in P. The book is suitable for a one-year course at the advanced undergraduate level. By omitting certain chapters, a one semester course can be based on it. For instance, if the students already have a good knowledge of partial differentiation and the elementary topology of P, then substantial parts of Chapters 4, 5, 7, and 8 can be covered in a semester. Some knowledge of linear algebra is presumed. However, results from linear algebra are reviewed as needed (in some cases without proof). A number of changes have been made in the first edition. Many of these were suggested by classroom experience. A new Chapter 2 on elementary topology has been added.

Calculus of Several Variables


Calculus of Several Variables

Author: Serge Lang

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





The present course on calculus of several variables is meant as a text, either for one semester following A First Course in Calculus, or for a year if the calculus sequence is so structured. For a one-semester course, no matter what, one should cover the first four chapters, up to the law of conservation of energy, which provides a beautiful application of the chain rule in a physical context, and ties up the mathematics of this course with standard material from courses on physics. Then there are roughly two possibilities: One is to cover Chapters V and VI on maxima and minima, quadratic forms, critical points, and Taylor's formula. One can then finish with Chapter IX on double integration to round off the one-term course. The other is to go into curve integrals, double integration, and Green's theorem, that is Chapters VII, VIII, IX, and X, §1. This forms a coherent whole.