Functions Of Several Variables

Download Functions Of Several Variables PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Functions Of Several Variables book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Functions of Several Variables

Author: Wendell Fleming
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The purpose of this book is to give a systematic development of differential and integral calculus for functions of several variables. The traditional topics from advanced calculus are included: maxima and minima, chain rule, implicit function theorem, multiple integrals, divergence and Stokes's theorems, and so on. However, the treatment differs in several important respects from the traditional one. Vector notation is used throughout, and the distinction is maintained between n-dimensional euclidean space En and its dual. The elements of the Lebesgue theory of integrals are given. In place of the traditional vector analysis in £3, we introduce exterior algebra and the calculus of exterior differential forms. The formulas of vector analysis then become special cases of formulas about differential forms and integrals over manifolds lying in P. The book is suitable for a one-year course at the advanced undergraduate level. By omitting certain chapters, a one semester course can be based on it. For instance, if the students already have a good knowledge of partial differentiation and the elementary topology of P, then substantial parts of Chapters 4, 5, 7, and 8 can be covered in a semester. Some knowledge of linear algebra is presumed. However, results from linear algebra are reviewed as needed (in some cases without proof). A number of changes have been made in the first edition. Many of these were suggested by classroom experience. A new Chapter 2 on elementary topology has been added.
Functions of Two Variables

Multivariate calculus, as traditionally presented, can overwhelm students who approach it directly from a one-variable calculus background. There is another way-a highly engaging way that does not neglect readers' own intuition, experience, and excitement. One that presents the fundamentals of the subject in a two-variable context and was set forth in the popular first edition of Functions of Two Variables. The second edition goes even further toward a treatment that is at once gentle but rigorous, atypical yet logical, and ultimately an ideal introduction to a subject important to careers both within and outside of mathematics. The author's style remains informal and his approach problem-oriented. He takes care to motivate concepts prior to their introduction and to justify them afterwards, to explain the use and abuse of notation and the scope of the techniques developed. Functions of Two Variables, Second Edition includes a new section on tangent lines, more emphasis on the chain rule, a rearrangement of several chapters, refined examples, and more exercises. It maintains a balance between intuition, explanation, methodology, and justification, enhanced by diagrams, heuristic comments, examples, exercises, and proofs.
Derivatives and Integrals of Multivariable Functions

Author: Alberto Guzman
language: en
Publisher: Springer Science & Business Media
Release Date: 2003-08-22
This work provides a systematic examination of derivatives and integrals of multivariable functions. The approach taken here is similar to that of the author’s previous text, "Continuous Functions of Vector Variables": specifically, elementary results from single-variable calculus are extended to functions in several-variable Euclidean space. Topics encompass differentiability, partial derivatives, directional derivatives and the gradient; curves, surfaces, and vector fields; the inverse and implicit function theorems; integrability and properties of integrals; and the theorems of Fubini, Stokes, and Gauss. Prerequisites include background in linear algebra, one-variable calculus, and some acquaintance with continuous functions and the topology of the real line. Written in a definition-theorem-proof format, the book is replete with historical comments, questions, and discussions about strategy, difficulties, and alternate paths. "Derivatives and Integrals of Multivariable Functions" is a rigorous introduction to multivariable calculus that will help students build a foundation for further explorations in analysis and differential geometry.