Semi Parametric Methods For Missing Data And Causal Inference


Download Semi Parametric Methods For Missing Data And Causal Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Semi Parametric Methods For Missing Data And Causal Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Semiparametric Theory and Missing Data


Semiparametric Theory and Missing Data

Author: Anastasios Tsiatis

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-01-15


DOWNLOAD





Missing data arise in almost all scientific disciplines. In many cases, the treatment of missing data in an analysis is carried out in a casual and ad-hoc manner, leading, in many cases, to invalid inference and erroneous conclusions. In the past 20 years or so, there has been a serious attempt to understand the underlying issues and difficulties that come about from missing data and their impact on subsequent analysis. There has been a great deal written on the theory developed for analyzing missing data for finite-dimensional parametric models. This includes an extensive literature on likelihood-based methods and multiple imputation. More recently, there has been increasing interest in semiparametric models which, roughly speaking, are models that include both a parametric and nonparametric component. Such models are popular because estimators in such models are more robust than in traditional parametric models. The theory of missing data applied to semiparametric models is scattered throughout the literature with no thorough comprehensive treatment of the subject. This book combines much of what is known in regard to the theory of estimation for semiparametric models with missing data in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is at a level that is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.

Semi-Parametric Methods for Missing Data and Causal Inference


Semi-Parametric Methods for Missing Data and Causal Inference

Author: BaoLuo Sun

language: en

Publisher:

Release Date: 2016


DOWNLOAD





In this dissertation, we propose methodology to account for missing data as well as a strategy to account for outcome heterogeneity.

Handbook of Missing Data Methodology


Handbook of Missing Data Methodology

Author: Geert Molenberghs

language: en

Publisher: CRC Press

Release Date: 2014-11-06


DOWNLOAD





Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and t