Self Assembly Dynamics And Energetics At The Solution Solid Interface


Download Self Assembly Dynamics And Energetics At The Solution Solid Interface PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Self Assembly Dynamics And Energetics At The Solution Solid Interface book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Self-assembly Dynamics and Energetics at the Solution/solid Interface


Self-assembly Dynamics and Energetics at the Solution/solid Interface

Author: Kirill Gurdumov

language: en

Publisher:

Release Date: 2022


DOWNLOAD





A comprehensive investigation on the formation dynamics and energetics of adlayer formation at the at the solution/solid interface has been performed using scanning tunneling microscopy (STM) with a custom solution flow cell design that offers new insight into the self-assembly process. Understanding the formation kinetics and thermodynamics of self-assembled monolayers (SAM) provides insight into the delicate balance of intermolecular forces on the molecular scale. We herein investigate the growth, dynamics, and stability of a model non-covalent self-assembler -- Co(II) octaethylporphyrin at the solution/solution interface on the HOPG and Au(111) surfaces. Real-time imaging of the nucleation and growth of the self-assembled layer was captured and studied by in-situ STM, and further explored using computational methods. A custom STM solution flow cell was designed and implemented to allow for in-situ monitoring of self-assembly at very low concentrations and with volatile solvents. Flow studies at low concentration provide insight into early-stage kinetics and structural formation of a SAM. It was found that the choice of organic solvent plays a dramatic role in the kinetics and structure of the SAM. These results, in turn, provide insight into the balance of the intermolecular forces driving the self-assembly. The role of the solvent was particularly strong in the case of 1,2,4-trichlorobenzene (TCB) on both HOPG and Au(111). Under TCB, a very stable rectangular structure is formed and stabilized by solvent-incorporation. A transition to a solvent free pseudo-hexagonal structure was only observed when extremely high concentrations of porphyrin were present in solution. Similarly, in the case of CoOEP adsorbed on Au(111) under toluene, a solvent-incorporated rectangular structure was observed that, like the TCB case, transitioned into a pseudo-hexagonal structure, but this transition occurred at much lower concentrations of porphyrin. Toluene co-adsorption was not observed on HOPG. When deposited from decane, a short-lived pseudo-rectangular structure was observed on Au(111) but not on HOPG. Only the pseudo-hexagonal structure was observed in the porphyrin adlayer when 1-phenyloctane were used as a solvent. On HOPG, mixed solvent competition was tested and gave further insight into the thermodynamic and kinetic roles that solvents play in self-assembly.

Materials Nanoarchitectonics


Materials Nanoarchitectonics

Author: Katsuhiko Ariga

language: en

Publisher: Elsevier

Release Date: 2023-12-07


DOWNLOAD





Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self‐organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures

Protein Self-Assembly


Protein Self-Assembly

Author: Jennifer J. McManus

language: en

Publisher: Humana

Release Date: 2020-08-08


DOWNLOAD





This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.