Secure Data Provenance And Inference Control With Semantic Web


Download Secure Data Provenance And Inference Control With Semantic Web PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Secure Data Provenance And Inference Control With Semantic Web book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Secure Data Provenance and Inference Control with Semantic Web


Secure Data Provenance and Inference Control with Semantic Web

Author: Bhavani Thuraisingham

language: en

Publisher: CRC Press

Release Date: 2014-08-01


DOWNLOAD





This book supplies step-by-step instructions on how to secure the provenance of data to make sure it is safe from inference attacks. It details the design and implementation of a policy engine for provenance of data and presents case studies that illustrate solutions in a typical distributed health care system for hospitals. Although the case studies describe solutions in the health care domain, the methods presented in the book are applicable to a range of other domains.

Secure Data Provenance and Inference Control with Semantic Web


Secure Data Provenance and Inference Control with Semantic Web

Author: Bhavani Thuraisingham

language: en

Publisher: CRC Press

Release Date: 2014-08-01


DOWNLOAD





With an ever-increasing amount of information on the web, it is critical to understand the pedigree, quality, and accuracy of your data. Using provenance, you can ascertain the quality of data based on its ancestral data and derivations, track back to sources of errors, allow automatic re-enactment of derivations to update data, and provide attribution of the data source. Secure Data Provenance and Inference Control with Semantic Web supplies step-by-step instructions on how to secure the provenance of your data to make sure it is safe from inference attacks. It details the design and implementation of a policy engine for provenance of data and presents case studies that illustrate solutions in a typical distributed health care system for hospitals. Although the case studies describe solutions in the health care domain, you can easily apply the methods presented in the book to a range of other domains. The book describes the design and implementation of a policy engine for provenance and demonstrates the use of Semantic Web technologies and cloud computing technologies to enhance the scalability of solutions. It covers Semantic Web technologies for the representation and reasoning of the provenance of the data and provides a unifying framework for securing provenance that can help to address the various criteria of your information systems. Illustrating key concepts and practical techniques, the book considers cloud computing technologies that can enhance the scalability of solutions. After reading this book you will be better prepared to keep up with the on-going development of the prototypes, products, tools, and standards for secure data management, secure Semantic Web, secure web services, and secure cloud computing.

Secure Data Science


Secure Data Science

Author: Bhavani Thuraisingham

language: en

Publisher: CRC Press

Release Date: 2022-04-27


DOWNLOAD





Secure data science, which integrates cyber security and data science, is becoming one of the critical areas in both cyber security and data science. This is because the novel data science techniques being developed have applications in solving such cyber security problems as intrusion detection, malware analysis, and insider threat detection. However, the data science techniques being applied not only for cyber security but also for every application area—including healthcare, finance, manufacturing, and marketing—could be attacked by malware. Furthermore, due to the power of data science, it is now possible to infer highly private and sensitive information from public data, which could result in the violation of individual privacy. This is the first such book that provides a comprehensive overview of integrating both cyber security and data science and discusses both theory and practice in secure data science. After an overview of security and privacy for big data services as well as cloud computing, this book describes applications of data science for cyber security applications. It also discusses such applications of data science as malware analysis and insider threat detection. Then this book addresses trends in adversarial machine learning and provides solutions to the attacks on the data science techniques. In particular, it discusses some emerging trends in carrying out trustworthy analytics so that the analytics techniques can be secured against malicious attacks. Then it focuses on the privacy threats due to the collection of massive amounts of data and potential solutions. Following a discussion on the integration of services computing, including cloud-based services for secure data science, it looks at applications of secure data science to information sharing and social media. This book is a useful resource for researchers, software developers, educators, and managers who want to understand both the high level concepts and the technical details on the design and implementation of secure data science-based systems. It can also be used as a reference book for a graduate course in secure data science. Furthermore, this book provides numerous references that would be helpful for the reader to get more details about secure data science.