Secure Data Science

Download Secure Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Secure Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Science For Cyber-security

Cyber-security is a matter of rapidly growing importance in industry and government. This book provides insight into a range of data science techniques for addressing these pressing concerns.The application of statistical and broader data science techniques provides an exciting growth area in the design of cyber defences. Networks of connected devices, such as enterprise computer networks or the wider so-called Internet of Things, are all vulnerable to misuse and attack, and data science methods offer the promise to detect such behaviours from the vast collections of cyber traffic data sources that can be obtained. In many cases, this is achieved through anomaly detection of unusual behaviour against understood statistical models of normality.This volume presents contributed papers from an international conference of the same name held at Imperial College. Experts from the field have provided their latest discoveries and review state of the art technologies.
Data Science and Security

This book presents best selected papers presented at the International Conference on Data Science for Computational Security (IDSCS 2020), organized by the Department of Data Science, CHRIST (Deemed to be University), Pune Lavasa Campus, India, during 13-14 March 2020. The proceeding will be targeting the current research works in the areas of data science, data security, data analytics, artificial intelligence, machine learning, computer vision, algorithms design, computer networking, data mining, big data, text mining, knowledge representation, soft computing and cloud computing.
Malware Data Science

Malware Data Science explains how to identify, analyze, and classify large-scale malware using machine learning and data visualization. Security has become a "big data" problem. The growth rate of malware has accelerated to tens of millions of new files per year while our networks generate an ever-larger flood of security-relevant data each day. In order to defend against these advanced attacks, you'll need to know how to think like a data scientist. In Malware Data Science, security data scientist Joshua Saxe introduces machine learning, statistics, social network analysis, and data visualization, and shows you how to apply these methods to malware detection and analysis. You'll learn how to: - Analyze malware using static analysis - Observe malware behavior using dynamic analysis - Identify adversary groups through shared code analysis - Catch 0-day vulnerabilities by building your own machine learning detector - Measure malware detector accuracy - Identify malware campaigns, trends, and relationships through data visualization Whether you're a malware analyst looking to add skills to your existing arsenal, or a data scientist interested in attack detection and threat intelligence, Malware Data Science will help you stay ahead of the curve.