Searching For Dark Matter With The Cms Detector In Proton Proton Collisions Containing A Single High Pt Photon And Large E Miss T

Download Searching For Dark Matter With The Cms Detector In Proton Proton Collisions Containing A Single High Pt Photon And Large E Miss T PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Searching For Dark Matter With The Cms Detector In Proton Proton Collisions Containing A Single High Pt Photon And Large E Miss T book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Searching for Dark Matter with the CMS Detector in Proton-proton Collisions Containing a Single High-pT Photon and Large E^miss/t

In this thesis, we present a search for dark matter in final states containing a high- PT photon and large missing transverse momentum in proton-proton collisions at [square root of s] = 13 TeV using data collected by the Compact Muon Solenoid.(CMS) experiment at the CERN Large Hadron Collider (LHC) corresponding to an integrated luminosity of 35.9 inverse femtobarns. The main advances in experimental technique compared to previous searches in this final state are the use of data-driven control regions to constrain the main irreducible backgrounds from Z( --> vv̄ + [gamma] and W( --> [iota]v)+ [gamma] production and an in-depth study of the unique anomolous detector signatures that result in backgrounds due to non-collision processes. With these improvements, we have the most robust analysis of this kind presented to date. No deviations from the predictions of the standard model are observed. The results are interpreted in the context of dark matter production and limits on new physics parameters are calculated at 95% confidence level. We focus on two simplified dark matter production models where new vector and axial mediators couple a new dark dirac fermion to the Standard Model quarks. These models are chosen as they cover a large class of WIMP-like dark matter particles that show up in many types of more complete new physics models. For the two models considered, the observed (expected) lower limits on the masses of the new mediators are 950 (1150) GeV for a dark matter particle of a mass of 1 GeV.
Search for Dark Matter, Extra Dimensions, and Unparticles in Monojet Events in Proton-proton Collisions at $\sqrt{s}$

Results are presented from a search for particle dark matter (DM), extra dimensions, and unparticles using events containing a jet and an imbalance in transverse momentum. The data were collected by the CMS detector in proton-proton collisions at the LHC and correspond to an integrated luminosity of 19.7 fb$^{-1}$ at a centre-of-mass energy of 8 TeV. The number of observed events is found to be consistent with the standard model prediction. Limits are placed on the DM-nucleon scattering cross section as a function of the DM particle mass for spin-dependent and spin-independent interactions. Limits are also placed on the scale parameter $M_\mathrm{D}$ in the ADD model of large extra dimensions, and on the unparticle model parameter $\Lambda_\mathrm{U}$. The constraints on ADD models and unparticles are the most stringent limits in this channel and those on the DM-nucleon scattering cross section are an improvement over previous collider results.
Search for Dark Matter and Unparticles in Events with a Z Boson and Missing Transverse Momentum in Proton-proton Collisions at Sqrt(s)

A search for dark matter and unparticle production at the LHC has been performed using events containing two charged leptons (electrons or muons), consistent with the decay of a Z boson, and large missing transverse momentum. This study is based on data collected with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 inverse femtobarns of proton-proton collisions at the LHC, at a center-of-mass energy of 13 TeV. No excess over the standard model expectation is observed. Compared to previous searches in this topology, which exclusively relied on effective field theories, the results are interpreted in terms of a simplified model of dark matter production for both vector and axial vector couplings between a mediator and dark matter particles. The first study of this class of models using CMS data at sqrt(s)=13 TeV is presented. Additionally, effective field theories of dark matter and unparticle production are used to interpret the data.