Scalable Optimization Via Probabilistic Modeling

Download Scalable Optimization Via Probabilistic Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Scalable Optimization Via Probabilistic Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Scalable Optimization via Probabilistic Modeling

I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.
Parallel and Distributed Computational Intelligence

Offering a global snapshot of parallel and distributed computational intelligence today, this volume covers ongoing issues as well as recent exploratory work. Topics discussed include GPUs, Clusters, Grids, volunteer computing, p2p networks and more.
Parallel Problem Solving from Nature, PPSN XI

Author: Robert Schaefer
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-09-03
This book constitutes the refereed proceedings of the 11th International Conference on Parallel Problem Solving from Nature - PPSN XI, held in Kraków, Poland, in September 2010. The 131 revised full papers were carefully reviewed and selected from 232 submissions. The conference covers a wide range of topics, from evolutionary computation to swarm intelligence, from bio-inspired computing to real world applications. Machine learning and mathematical games supported by evolutionary algorithms as well as memetic, agent-oriented systems are also represented.