Sampling Statistics

Download Sampling Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sampling Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Sampling Statistics

Discover the latest developments and current practices in survey sampling Survey sampling is an important component of research in many fields, and as the importance of survey sampling continues to grow, sophisticated sampling techniques that are both economical and scientifically reliable are essential to planning statistical research and the design of experiments. Sampling Statistics presents estimation techniques and sampling concepts to facilitate the application of model-based procedures to survey samples. The book begins with an introduction to standard probability sampling concepts, which provides the foundation for studying samples selected from a finite population. The development of the theory of complex sampling methods is detailed, and subsequent chapters explore the construction of estimators, sample design, replication variance estimation, and procedures such as nonresponse adjustment and small area estimation where models play a key role. A final chapter covers analytic studies in which survey data are used for the estimation of parameters for a subject matter model. The author draws upon his extensive experience with survey samples in the book's numerous examples. Both the production of "general use" databases and the analytic study of a limited number of characteristics are discussed. Exercises at the end of each chapter allow readers to test their comprehension of the presented concepts and techniques, and the references provide further resources for study. Sampling Statistics is an ideal book for courses in survey sampling at the graduate level. It is also a valuable reference for practicing statisticians who analyze survey data or are involved in the design of sample surveys.
Contributions to Sampling Statistics

This book contains a selection of the papers presented at the ITACOSM 2013 Conference, held in Milan in June 2013. It is intended as an international forum of scientific discussion on the developments of theory and application of survey sampling methodologies and applications in human and natural sciences. The book gathers research papers carefully selected from both invited and contributed sessions of the conference. The whole book appears to be a relevant contribution to various key aspects of sampling methodology and techniques; it deals with some hot topics in sampling theory, such as calibration, quantile-regression and multiple frame surveys and with innovative methodologies in important topics of both sampling theory and applications. Contributions cut across current sampling methodologies such as interval estimation for complex samples, randomized responses, bootstrap, weighting, modeling, imputation, small area estimation and effective use of auxiliary information; applications cover a wide and enlarging range of subjects in official household surveys, Bayesian networks, auditing, business and economic surveys, geostatistics and agricultural statistics. The book is an updated, high level reference survey addressed to researchers, professionals and practitioners in many fields.
Sampling

Author: Steven K. Thompson
language: en
Publisher: John Wiley & Sons
Release Date: 2012-02-08
Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treatment of both classical and modern sampling design and estimation methods, along with sampling methods for rare, clustered, and hard-to-detect populations. This Third Edition retains the general organization of the two previous editions, but incorporates extensive new material—sections, exercises, and examples—throughout. Inside, readers will find all-new approaches to explain the various techniques in the book; new figures to assist in better visualizing and comprehending underlying concepts such as the different sampling strategies; computing notes for sample selection, calculation of estimates, and simulations; and more. Organized into six sections, the book covers basic sampling, from simple random to unequal probability sampling; the use of auxiliary data with ratio and regression estimation; sufficient data, model, and design in practical sampling; useful designs such as stratified, cluster and systematic, multistage, double and network sampling; detectability methods for elusive populations; spatial sampling; and adaptive sampling designs. Featuring a broad range of topics, Sampling, Third Edition serves as a valuable reference on useful sampling and estimation methods for researchers in various fields of study, including biostatistics, ecology, and the health sciences. The book is also ideal for courses on statistical sampling at the upper-undergraduate and graduate levels.