Robust And Multivariate Statistical Methods


Download Robust And Multivariate Statistical Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Robust And Multivariate Statistical Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Robust and Multivariate Statistical Methods


Robust and Multivariate Statistical Methods

Author: Mengxi Yi

language: en

Publisher: Springer Nature

Release Date: 2023-04-19


DOWNLOAD





This book presents recent developments in multivariate and robust statistical methods. Featuring contributions by leading experts in the field it covers various topics, including multivariate and high-dimensional methods, time series, graphical models, robust estimation, supervised learning and normal extremes. It will appeal to statistics and data science researchers, PhD students and practitioners who are interested in modern multivariate and robust statistics. The book is dedicated to David E. Tyler on the occasion of his pending retirement and also includes a review contribution on the popular Tyler’s shape matrix.

Robust Statistics


Robust Statistics

Author: Ricardo A. Maronna

language: en

Publisher: John Wiley & Sons

Release Date: 2019-01-04


DOWNLOAD





A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

Robust Nonparametric Statistical Methods


Robust Nonparametric Statistical Methods

Author: Thomas P. Hettmansperger

language: en

Publisher: Hodder Education

Release Date: 1998


DOWNLOAD





Based in ranks of the data, this book offers an alternative to the traditional least squares approach. Topics include one- and two-sample location models, linear models (including multiple regression and designed experiments), and multivariate models. Rank tests and estimates for all models are developed, including bounded influence and high breakdown methods. Emphasis is on efficiency and robustness and all methods are illustrated on data sets.