Regularization Methods In Banach Spaces Applied To Inverse Medium Scattering Problems

Download Regularization Methods In Banach Spaces Applied To Inverse Medium Scattering Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regularization Methods In Banach Spaces Applied To Inverse Medium Scattering Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Inverse Problems: Tikhonov Theory And Algorithms

Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are discussed in detail. The mathematical theory focuses on nonsmooth Tikhonov regularization for linear and nonlinear inverse problems. The computational methods include nonsmooth optimization algorithms, direct inversion methods and uncertainty quantification via Bayesian inference.The book offers a comprehensive treatment of modern techniques, and seamlessly blends regularization theory with computational methods, which is essential for developing accurate and efficient inversion algorithms for many practical inverse problems.It demonstrates many current developments in the field of computational inversion, such as value function calculus, augmented Tikhonov regularization, multi-parameter Tikhonov regularization, semismooth Newton method, direct sampling method, uncertainty quantification and approximate Bayesian inference. It is written for graduate students and researchers in mathematics, natural science and engineering.
Phase retrieval problems in x-ray physics

Author: Carolin Homann
language: en
Publisher: Göttingen University Press
Release Date: 2015
In phase retrieval problems that occur in imaging by coherent x-ray diffraction, one tries to reconstruct information about a sample of interest from possibly noisy intensity measurements of the wave fi eld traversing the sample. The mathematical formulation of these problems bases on some assumptions. Usually one of them is that the x-ray wave fi eld is generated by a point source. In order to address this very idealized assumption, it is common to perform a data preprocessing step, the so-called empty beam correction. Within this work, we study the validity of this approach by presenting a quantitative error estimate. Moreover, in order to solve these phase retrieval problems, we want to incorporate a priori knowledge about the structure of the noise and the solution into the reconstruction process. For this reason, the application of a problem adapted iteratively regularized Newton-type method becomes particularly attractive. This method includes the solution of a convex minimization problem in each iteration step. We present a method for solving general optimization problems of this form. Our method is a generalization of a commonly used algorithm which makes it efficiently applicable to a wide class of problems. We also proof convergence results and show the performance of our method by numerical examples.