Phase Retrieval Problems In X Ray Physics

Download Phase Retrieval Problems In X Ray Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Phase Retrieval Problems In X Ray Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Phase retrieval problems in x-ray physics

Author: Carolin Homann
language: en
Publisher: Göttingen University Press
Release Date: 2015
In phase retrieval problems that occur in imaging by coherent x-ray diffraction, one tries to reconstruct information about a sample of interest from possibly noisy intensity measurements of the wave fi eld traversing the sample. The mathematical formulation of these problems bases on some assumptions. Usually one of them is that the x-ray wave fi eld is generated by a point source. In order to address this very idealized assumption, it is common to perform a data preprocessing step, the so-called empty beam correction. Within this work, we study the validity of this approach by presenting a quantitative error estimate. Moreover, in order to solve these phase retrieval problems, we want to incorporate a priori knowledge about the structure of the noise and the solution into the reconstruction process. For this reason, the application of a problem adapted iteratively regularized Newton-type method becomes particularly attractive. This method includes the solution of a convex minimization problem in each iteration step. We present a method for solving general optimization problems of this form. Our method is a generalization of a commonly used algorithm which makes it efficiently applicable to a wide class of problems. We also proof convergence results and show the performance of our method by numerical examples.
Nanoscale Photonic Imaging

This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
Phase retrieval problems in x-ray physics: from modeling to efficient algorithms

In phase retrieval problems that occur in imaging by coherent x-ray diffraction, one tries to reconstruct information about a sample of interest from possibly noisy intensity measurements of the wave fi eld traversing the sample. The mathematical formulation of these problems bases on some assumptions. Usually one of them is that the x-ray wave fi eld is generated by a point source. In order to address this very idealized assumption, it is common to perform a data preprocessing step, the so-called empty beam correction. Within this work, we study the validity of this approach by presenting a quantitative error estimate. Moreover, in order to solve these phase retrieval problems, we want to incorporate a priori knowledge about the structure of the noise and the solution into the reconstruction process. For this reason, the application of a problem adapted iteratively regularized Newton-type method becomes particularly attractive. This method includes the solution of a convex minimization problem in each iteration step. We present a method for solving general optimization problems of this form. Our method is a generalization of a commonly used algorithm which makes it efficiently applicable to a wide class of problems. We also proof convergence results and show the performance of our method by numerical examples.