Regression Analysis For The Social Sciences


Download Regression Analysis For The Social Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regression Analysis For The Social Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Regression Analysis for the Social Sciences


Regression Analysis for the Social Sciences

Author: Rachel A. Gordon

language: en

Publisher:

Release Date: 2010


DOWNLOAD





The book provides graduate students in the social sciences with the basic skills that they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include:interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis.teaching of both SAS and Stata "side-by-side" and use of chapter exercises in which students practice programming

Regression Analysis


Regression Analysis

Author: Richard A. Berk

language: en

Publisher: SAGE Publications

Release Date: 2003-07-17


DOWNLOAD





Berk has incisively identified the various strains of regression abuse and suggests practical steps for researchers who desire to do good social science while avoiding such errors." --Peter H. Rossi, University of Massachusetts, Amherst "I have been waiting for a book like this for some time. Practitioners, especially those doing applied work, will have much to gain from Berk′s volume, regardless of their level of statistical sophistication. Graduate students in sociology, education, public policy, and any number of similar fields should also use it. It will also be a useful foil for conventional texts for the teaching of the regression model. I plan to use it for my students as a text, and hope others will do the same." --Herbert Smith, Professor of Demography & Sociology, University of Pennsylvania Regression is often applied to questions for which it is ill equipped to answer. As a formal matter, conventional regression analysis does nothing more than produce from a data set a collection of conditional means and conditional variances. The problem, though, is that researchers typically want more: they want tests, confidence intervals and the ability to make causal claims. However, these capabilities require information external to that data themselves, and too often that information makes implausible demands on how nature is supposed to function. Convenience samples are treated as if they are random samples. Causal status is given to predictors that cannot be manipulated. Disturbance terms are assumed to behave not as nature might produce them, but as required by the model. Regression Analysis: A Constructive Critique identifies a wide variety of problems with regression analysis as it is commonly used and then provides a number of ways in which practice could be improved. Regression is most useful for data reduction, leading to relatively simple but rich and precise descriptions of patterns in a data set. The emphasis on description provides readers with an insightful rethinking from the ground up of what regression analysis can do, so that readers can better match regression analysis with useful empirical questions and improved policy-related research. "An interesting and lively text, rich in practical wisdom, written for people who do empirical work in the social sciences and their graduate students." --David A. Freedman, Professor of Statistics, University of California, Berkeley

Theory-Based Data Analysis for the Social Sciences


Theory-Based Data Analysis for the Social Sciences

Author: Carol S. Aneshensel

language: en

Publisher: SAGE

Release Date: 2013


DOWNLOAD





This book presents the elaboration model for the multivariate analysis of observational quantitative data. This model entails the systematic introduction of "third variables" to the analysis of a focal relationship between one independent and one dependent variable to ascertain whether an inference of causality is justified. Two complementary strategies are used: an exclusionary strategy that rules out alternative explanations such as spuriousness and redundancy with competing theories, and an inclusive strategy that connects the focal relationship to a network of other relationships, including the hypothesized causal mechanisms linking the focal independent variable to the focal dependent variable. The primary emphasis is on the translation of theory into a logical analytic strategy and the interpretation of results. The elaboration model is applied with case studies drawn from newly published research that serve as prototypes for aligning theory and the data analytic plan used to test it; these studies are drawn from a wide range of substantive topics in the social sciences, such as emotion management in the workplace, subjective age identification during the transition to adulthood, and the relationship between religious and paranormal beliefs. The second application of the elaboration model is in the form of original data analysis presented in two Analysis Journals that are integrated throughout the text and implement the full elaboration model. Using real data, not contrived examples, the text provides a step-by-step guide through the process of integrating theory with data analysis in order to arrive at meaningful answers to research questions.