Recurrent Sequences

Download Recurrent Sequences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Recurrent Sequences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Recurrent Sequences

This self-contained text presents state-of-the-art results on recurrent sequences and their applications in algebra, number theory, geometry of the complex plane and discrete mathematics. It is designed to appeal to a wide readership, ranging from scholars and academics, to undergraduate students, or advanced high school and college students training for competitions. The content of the book is very recent, and focuses on areas where significant research is currently taking place. Among the new approaches promoted in this book, the authors highlight the visualization of some recurrences in the complex plane, the concurrent use of algebraic, arithmetic, and trigonometric perspectives on classical number sequences, and links to many applications. It contains techniques which are fundamental in other areas of math and encourages further research on the topic. The introductory chapters only require good understanding of college algebra, complex numbers, analysis and basic combinatorics. For Chapters 3, 4 and 6 the prerequisites include number theory, linear algebra and complex analysis. The first part of the book presents key theoretical elements required for a good understanding of the topic. The exposition moves on to to fundamental results and key examples of recurrences and their properties. The geometry of linear recurrences in the complex plane is presented in detail through numerous diagrams, which lead to often unexpected connections to combinatorics, number theory, integer sequences, and random number generation. The second part of the book presents a collection of 123 problems with full solutions, illustrating the wide range of topics where recurrent sequences can be found. This material is ideal for consolidating the theoretical knowledge and for preparing students for Olympiads.
Recurrence Sequences

Author: Graham Everest
language: en
Publisher: American Mathematical Soc.
Release Date: 2015-09-03
Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory.
Applications of Fibonacci Numbers

Author: Fredric T. Howard
language: en
Publisher: Springer Science & Business Media
Release Date: 2004-03-31
This book contains 28 research articles from among the 49 papers and abstracts presented at the Tenth International Conference on Fibonacci Numbers and Their Applications. These articles have been selected after a careful review by expert referees, and they range over many areas of mathematics. The Fibonacci numbers and recurrence relations are their unifying bond. We note that the article "Fibonacci, Vern and Dan" , which follows the Introduction to this volume, is not a research paper. It is a personal reminiscence by Marjorie Bicknell-Johnson, a longtime member of the Fibonacci Association. The editor believes it will be of interest to all readers. It is anticipated that this book, like the eight predecessors, will be useful to research workers and students at all levels who are interested in the Fibonacci numbers and their applications. March 16, 2003 The Editor Fredric T. Howard Mathematics Department Wake Forest University Box 7388 Reynolda Station Winston-Salem, NC 27109 xxi THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERNATIONAL COMMITTEE Calvin Long, Chairman A. F. Horadam (Australia), Co-Chair Terry Crites A. N. Philippou (Cyprus), Co-Chair Steven Wilson A. Adelberg (U. S. A. ) C. Cooper (U. S. A. ) Jeff Rushal H. Harborth (Germany) Y. Horibe (Japan) M. Bicknell-Johnson (U. S. A. ) P. Kiss (Hungary) J. Lahr (Luxembourg) G. M. Phillips (Scotland) J. 'Thrner (New Zealand) xxiii xxiv LIST OF CONTRlBUTORS TO THE CONFERENCE * ADELBERG, ARNOLD, "Universal Bernoulli Polynomials and p-adic Congruences. " *AGRATINI, OCTAVIAN, "A Generalization of Durrmeyer-Type Polynomials. " BENJAMIN, ART, "Mathemagics.