Quantum Physics In One Dimension

Download Quantum Physics In One Dimension PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantum Physics In One Dimension book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Elementary Quantum Mechanics in One Dimension

One of the key components of modern physics, quantum mechanics is used in such fields as chemistry, electrical engineering, and computer science. Central to quantum mechanics is Schrödinger's Equation, which explains the behavior of atomic particles and the energy levels of a quantum system. Robert Gilmore's innovative approach to Schrödinger's Equation offers new insight into quantum mechanics at an elementary level. Gilmore presents compact transfer matrix methods for solving quantum problems that can easily be implemented on a personal computer. He shows how to use these methods on a large variety of potentials, both simple and periodic. He shows how to compute bound states, scattering states, and energy bands and describes the relation between bound and scattering states. Chapters on alloys, superlattices, quantum engineering, and solar cells indicate the practical application of the methods discussed. Gilmore's concise and elegant treatment will be of interest to students and professors of introductory and intermediate quantum courses, as well as professionals working in electrical engineering and applied mathematics.
Mathematical Physics in One Dimension

Mathematical Physics in One Dimension: Exactly Soluble Models of Interacting Particles covers problems of mathematical physics with one-dimensional analogs. The book discusses classical statistical mechanics and phase transitions; the disordered chain of harmonic oscillators; and electron energy bands in ordered and disordered crystals. The text also describes the many-fermion problem; the theory of the interacting boson gas; the theory of the antiferromagnetic linear chains; and the time-dependent phenomena of many-body systems (i.e., classical or quantum-mechanical dynamics). Physicists and mathematicians will find the book invaluable.
An Introduction to Integrable Techniques for One-Dimensional Quantum Systems

This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.