Mathematical Physics In One Dimension

Download Mathematical Physics In One Dimension PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Physics In One Dimension book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematical Physics in One Dimension

Mathematical Physics in One Dimension: Exactly Soluble Models of Interacting Particles covers problems of mathematical physics with one-dimensional analogs. The book discusses classical statistical mechanics and phase transitions; the disordered chain of harmonic oscillators; and electron energy bands in ordered and disordered crystals. The text also describes the many-fermion problem; the theory of the interacting boson gas; the theory of the antiferromagnetic linear chains; and the time-dependent phenomena of many-body systems (i.e., classical or quantum-mechanical dynamics). Physicists and mathematicians will find the book invaluable.
The Functions of Mathematical Physics

Author: Harry Hochstadt
language: en
Publisher: Courier Corporation
Release Date: 2012-04-30
A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics. In the 18th and 19th centuries, the theorists who devoted themselves to this field — pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel — were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating membrane, some, such as those related to the theory of discontinuous groups, still remain of purely mathematical interest. Chapters One and Two examine orthogonal polynomials, with sections on such topics as the recurrence formula, the Christoffel-Darboux formula, the Weierstrass approximation theorem, and the application of Hermite polynomials to quantum mechanics. Chapter Three is devoted to the principal properties of the gamma function, including asymptotic expansions and Mellin-Barnes integrals. Chapter Four covers hypergeometric functions, including a review of linear differential equations with regular singular points, and a general method for finding integral representations. Chapters Five and Six are concerned with the Legendre functions and their use in the solutions of Laplace's equation in spherical coordinates, as well as problems in an n-dimension setting. Chapter Seven deals with confluent hypergeometric functions, and Chapter Eight examines, at length, the most important of these — the Bessel functions. Chapter Nine covers Hill's equations, including the expansion theorems.
Many-body Problem, The: An Encyclopedia Of Exactly Solved Models In One Dimension (3rd Printing With Revisions And Corrections)

This book differs from its predecessor, Lieb & Mattis Mathematical Physics in One Dimension, in a number of important ways. Classic discoveries which once had to be omitted owing to lack of space — such as the seminal paper by Fermi, Pasta and Ulam on lack of ergodicity of the linear chain, or Bethe's original paper on the Bethe ansatz — can now be incorporated. Many applications which did not even exist in 1966 (some of which were originally spawned by the publication of Lieb & Mattis) are newly included. Among these, this new book contains critical surveys of a number of important developments: the exact solution of the Hubbard model, the concept of spinons, the Haldane gap in magnetic spin-one chains, bosonization and fermionization, solitions and the approach to thermodynamic equilibrium, quantum statistical mechanics, localization of normal modes and eigenstates in disordered chains, and a number of other contemporary concerns.