Python For Data Engineering


Download Python For Data Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python For Data Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Engineering with Python


Data Engineering with Python

Author: Paul Crickard

language: en

Publisher: Packt Publishing Ltd

Release Date: 2020-10-23


DOWNLOAD





Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required.

DATA ENGINEERING WITH PYTHON & SQL - 2025 Edition


DATA ENGINEERING WITH PYTHON & SQL - 2025 Edition

Author: Diego Rodrigues

language: en

Publisher: Diego Rodrigues

Release Date: 2025-01-01


DOWNLOAD





Welcome to "DATA ENGINEERING WITH PYTHON AND SQL: Build Scalable Data Pipelines - 2025 Edition," a comprehensive and essential guide for professionals and students who wish to master the art of data engineering in a data-driven world. This book, written by Diego Rodrigues, a best-selling author with over 180 titles published in six languages, combines theory and practice to empower you in building efficient and scalable pipelines. Python and SQL are indispensable tools for data engineers, enabling precise manipulation, integration, and optimization of data workflows. Throughout this book, you will be guided through fundamental and advanced topics, exploring everything from the basics of data engineering to sophisticated strategies for security, governance, and automation of pipelines in both on-premises and cloud environments. Each chapter has been carefully designed to provide practical and applied understanding. You will learn to design database schemas, implement robust ETLs, automate workflows with frameworks such as Apache Airflow, and optimize SQL queries for high performance. Moreover, the book covers emerging topics like DataOps, API integration, and the use of Big Data tools such as Hadoop and Spark. With practical examples, detailed scripts, and clear explanations, "DATA ENGINEERING WITH PYTHON AND SQL" is more than just a technical manual; it is a gateway to a transformative career in the data field. Get ready to stand out in a competitive market and propel your professional journey. Your transformation in data engineering begins now! TAGS: Python Java Linux Kali HTML ASP.NET Ada Assembly BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Regression Logistic Regression Decision Trees Random Forests AI ML K-Means Clustering Support Vector Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF AWS Google Cloud IBM Azure Databricks Nvidia Meta Power BI IoT CI/CD Hadoop Spark Dask SQLAlchemy Web Scraping MySQL Big Data Science OpenAI ChatGPT Handler RunOnUiThread() Qiskit Q# Cassandra Bigtable VIRUS MALWARE Information Pen Test Cybersecurity Linux Distributions Ethical Hacking Vulnerability Analysis System Exploration Wireless Attacks Web Application Security Malware Analysis Social Engineering Social Engineering Toolkit SET Computer Science IT Professionals Careers Expertise Library Training Operating Systems Security Testing Penetration Test Cycle Mobile Techniques Industry Global Trends Tools Framework Network Security Courses Tutorials Challenges Landscape Cloud Threats Compliance Research Technology Flutter Ionic Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Bitrise Actions Material Design Cupertino Fastlane Appium Selenium Jest Visual Studio AR VR sql mysql

Python for Data Engineering


Python for Data Engineering

Author: Greyson Chesterfield

language: en

Publisher: Independently Published

Release Date: 2025-01-02


DOWNLOAD





Python for Data Engineering: Build ETL Pipelines and Handle Big Data Efficiently with Python Unlock the full potential of data engineering with "Python for Data Engineering", the essential guide for aspiring data engineers, data scientists, and IT professionals seeking to master the art of building robust ETL pipelines and managing big data using Python. Whether you're just beginning your data engineering journey or looking to enhance your existing skills, this comprehensive handbook provides the tools, techniques, and insights necessary to transform raw data into valuable assets for your organization. Dive into expertly structured chapters that blend theoretical knowledge with practical applications, covering everything from the fundamentals of data engineering and Python programming to advanced topics like distributed computing, real-time data processing, and cloud integration. Learn how to design, develop, and deploy scalable ETL pipelines that efficiently extract, transform, and load data from diverse sources. Discover best practices for handling large datasets, optimizing performance, and ensuring data quality and integrity throughout the data lifecycle. "Python for Data Engineering" empowers you to: Master ETL Processes: Understand the core principles of ETL and learn how to implement efficient data extraction, transformation, and loading strategies using Python. Handle Big Data: Explore techniques for managing and processing large-scale datasets with tools like Apache Spark, Hadoop, and Dask, all within the Python ecosystem. Automate Workflows: Streamline data engineering tasks by automating repetitive processes with Python scripts and workflow management tools such as Airflow and Luigi. Design Scalable Pipelines: Build resilient and scalable data pipelines that can handle increasing data volumes and complexity with ease. Ensure Data Quality: Implement robust data validation, cleansing, and monitoring practices to maintain high-quality data standards. Leverage Cloud Services: Integrate Python-based data engineering solutions with leading cloud platforms like AWS, Google Cloud, and Azure for enhanced flexibility and scalability. Optimize Performance: Fine-tune your data engineering workflows for maximum efficiency, reducing latency and improving throughput. Implement Security Best Practices: Protect sensitive data by applying security measures and ensuring compliance with industry standards and regulations. Visualize and Report Data: Create insightful visualizations and reports to communicate data findings effectively using libraries like Matplotlib, Seaborn, and Plotly. Stay Ahead with Advanced Topics: Delve into cutting-edge technologies such as machine learning integration, real-time analytics, and serverless computing to keep your skills current and in demand. Packed with real-world examples, hands-on exercises, and expert tips, "Python for Data Engineering" serves as your indispensable companion in navigating the dynamic field of data engineering. Whether you're building data pipelines for business intelligence, supporting data-driven decision-making, or driving innovation through data analytics, this book equips you with the knowledge and skills to excel. Key Features: Comprehensive coverage of data engineering fundamentals and advanced Python techniques Step-by-step tutorials for building and deploying ETL pipelines In-depth guides to handling and processing big data with Python-based tools Real-world case studies illustrating best practices and common challenges Practical exercises and projects to reinforce learning and develop hands-on experience Insights into the latest trends and technologies in the data engineering landscape