Data Engineering With Python Sql 2025 Edition

Download Data Engineering With Python Sql 2025 Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Engineering With Python Sql 2025 Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
DATA ENGINEERING WITH PYTHON & SQL - 2025 Edition

Welcome to "DATA ENGINEERING WITH PYTHON AND SQL: Build Scalable Data Pipelines - 2025 Edition," a comprehensive and essential guide for professionals and students who wish to master the art of data engineering in a data-driven world. This book, written by Diego Rodrigues, a best-selling author with over 180 titles published in six languages, combines theory and practice to empower you in building efficient and scalable pipelines. Python and SQL are indispensable tools for data engineers, enabling precise manipulation, integration, and optimization of data workflows. Throughout this book, you will be guided through fundamental and advanced topics, exploring everything from the basics of data engineering to sophisticated strategies for security, governance, and automation of pipelines in both on-premises and cloud environments. Each chapter has been carefully designed to provide practical and applied understanding. You will learn to design database schemas, implement robust ETLs, automate workflows with frameworks such as Apache Airflow, and optimize SQL queries for high performance. Moreover, the book covers emerging topics like DataOps, API integration, and the use of Big Data tools such as Hadoop and Spark. With practical examples, detailed scripts, and clear explanations, "DATA ENGINEERING WITH PYTHON AND SQL" is more than just a technical manual; it is a gateway to a transformative career in the data field. Get ready to stand out in a competitive market and propel your professional journey. Your transformation in data engineering begins now! TAGS: Python Java Linux Kali HTML ASP.NET Ada Assembly BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Regression Logistic Regression Decision Trees Random Forests AI ML K-Means Clustering Support Vector Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF AWS Google Cloud IBM Azure Databricks Nvidia Meta Power BI IoT CI/CD Hadoop Spark Dask SQLAlchemy Web Scraping MySQL Big Data Science OpenAI ChatGPT Handler RunOnUiThread() Qiskit Q# Cassandra Bigtable VIRUS MALWARE Information Pen Test Cybersecurity Linux Distributions Ethical Hacking Vulnerability Analysis System Exploration Wireless Attacks Web Application Security Malware Analysis Social Engineering Social Engineering Toolkit SET Computer Science IT Professionals Careers Expertise Library Training Operating Systems Security Testing Penetration Test Cycle Mobile Techniques Industry Global Trends Tools Framework Network Security Courses Tutorials Challenges Landscape Cloud Threats Compliance Research Technology Flutter Ionic Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Bitrise Actions Material Design Cupertino Fastlane Appium Selenium Jest Visual Studio AR VR sql mysql
Data Engineering with Apache Spark, Delta Lake, and Lakehouse

Author: Manoj Kukreja
language: en
Publisher: Packt Publishing Ltd
Release Date: 2021-10-22
Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
Data Engineering with Python & SQL

Author: DIEGO. RODRIGUES
language: en
Publisher: Independently Published
Release Date: 2025-02-09
Welcome to "DATA ENGINEERING WITH PYTHON AND SQL: Build Scalable Data Pipelines - 2025 Edition," a comprehensive and essential guide for professionals and students who wish to master the art of data engineering in a data-driven world. This book, written by Diego Rodrigues, a best-selling author with over 180 titles published in six languages, combines theory and practice to empower you in building efficient and scalable pipelines. Python and SQL are indispensable tools for data engineers, enabling precise manipulation, integration, and optimization of data workflows. Throughout this book, you will be guided through fundamental and advanced topics, exploring everything from the basics of data engineering to sophisticated strategies for security, governance, and automation of pipelines in both on-premises and cloud environments. Each chapter has been carefully designed to provide practical and applied understanding. You will learn to design database schemas, implement robust ETLs, automate workflows with frameworks such as Apache Airflow, and optimize SQL queries for high performance. Moreover, the book covers emerging topics like DataOps, API integration, and the use of Big Data tools such as Hadoop and Spark. With practical examples, detailed scripts, and clear explanations, "DATA ENGINEERING WITH PYTHON AND SQL" is more than just a technical manual; it is a gateway to a transformative career in the data field. Get ready to stand out in a competitive market and propel your professional journey. Your transformation in data engineering begins now!