Propositional Probabilistic And Evidential Reasoning


Download Propositional Probabilistic And Evidential Reasoning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Propositional Probabilistic And Evidential Reasoning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Propositional, Probabilistic and Evidential Reasoning


Propositional, Probabilistic and Evidential Reasoning

Author: Weiru Liu

language: en

Publisher: Physica

Release Date: 2013-06-05


DOWNLOAD





How to draw plausible conclusions from uncertain and conflicting sources of evidence is one of the major intellectual challenges of Artificial Intelligence. It is a prerequisite of the smart technology needed to help humans cope with the information explosion of the modern world. In addition, computational modelling of uncertain reasoning is a key to understanding human rationality. Previous computational accounts of uncertain reasoning have fallen into two camps: purely symbolic and numeric. This book represents a major advance by presenting a unifying framework which unites these opposing camps. The Incidence Calculus can be viewed as both a symbolic and a numeric mechanism. Numeric values are assigned indirectly to evidence via the possible worlds in which that evidence is true. This facilitates purely symbolic reasoning using the possible worlds and numeric reasoning via the probabilities of those possible worlds. Moreover, the indirect assignment solves some difficult technical problems, like the combinat ion of dependent sources of evidcence, which had defeated earlier mechanisms. Weiru Liu generalises the Incidence Calculus and then compares it to a succes sion of earlier computational mechanisms for uncertain reasoning: Dempster-Shafer Theory, Assumption-Based Truth Maintenance, Probabilis tic Logic, Rough Sets, etc. She shows how each of them is represented and interpreted in Incidence Calculus. The consequence is a unified mechanism which includes both symbolic and numeric mechanisms as special cases. It provides a bridge between symbolic and numeric approaches, retaining the advantages of both and overcoming some of their disadvantages.

Propositional, Probabilistic and Evidential Reasoning


Propositional, Probabilistic and Evidential Reasoning

Author: Weiru Liu

language: en

Publisher: Physica

Release Date: 2014-03-12


DOWNLOAD





How to draw plausible conclusions from uncertain and conflicting sources of evidence is one of the major intellectual challenges of Artificial Intelligence. It is a prerequisite of the smart technology needed to help humans cope with the information explosion of the modern world. In addition, computational modelling of uncertain reasoning is a key to understanding human rationality. Previous computational accounts of uncertain reasoning have fallen into two camps: purely symbolic and numeric. This book represents a major advance by presenting a unifying framework which unites these opposing camps. The Incidence Calculus can be viewed as both a symbolic and a numeric mechanism. Numeric values are assigned indirectly to evidence via the possible worlds in which that evidence is true. This facilitates purely symbolic reasoning using the possible worlds and numeric reasoning via the probabilities of those possible worlds. Moreover, the indirect assignment solves some difficult technical problems, like the combinat ion of dependent sources of evidcence, which had defeated earlier mechanisms. Weiru Liu generalises the Incidence Calculus and then compares it to a succes sion of earlier computational mechanisms for uncertain reasoning: Dempster-Shafer Theory, Assumption-Based Truth Maintenance, Probabilis tic Logic, Rough Sets, etc. She shows how each of them is represented and interpreted in Incidence Calculus. The consequence is a unified mechanism which includes both symbolic and numeric mechanisms as special cases. It provides a bridge between symbolic and numeric approaches, retaining the advantages of both and overcoming some of their disadvantages.

Probabilistic Reasoning in Intelligent Systems


Probabilistic Reasoning in Intelligent Systems

Author: Judea Pearl

language: en

Publisher: Morgan Kaufmann

Release Date: 1988-09


DOWNLOAD





Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.