Projection Matrices Generalized Inverse Matrices And Singular Value Decomposition

Download Projection Matrices Generalized Inverse Matrices And Singular Value Decomposition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Projection Matrices Generalized Inverse Matrices And Singular Value Decomposition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition

Author: Haruo Yanai
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-04-06
Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space. This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields.
Matrix Algebra for Linear Models

Author: Marvin H. J. Gruber
language: en
Publisher: John Wiley & Sons
Release Date: 2013-12-31
A self-contained introduction to matrix analysis theory and applications in the field of statistics Comprehensive in scope, Matrix Algebra for Linear Models offers a succinct summary of matrix theory and its related applications to statistics, especially linear models. The book provides a unified presentation of the mathematical properties and statistical applications of matrices in order to define and manipulate data. Written for theoretical and applied statisticians, the book utilizes multiple numerical examples to illustrate key ideas, methods, and techniques crucial to understanding matrix algebra’s application in linear models. Matrix Algebra for Linear Models expertly balances concepts and methods allowing for a side-by-side presentation of matrix theory and its linear model applications. Including concise summaries on each topic, the book also features: Methods of deriving results from the properties of eigenvalues and the singular value decomposition Solutions to matrix optimization problems for obtaining more efficient biased estimators for parameters in linear regression models A section on the generalized singular value decomposition Multiple chapter exercises with selected answers to enhance understanding of the presented material Matrix Algebra for Linear Models is an ideal textbook for advanced undergraduate and graduate-level courses on statistics, matrices, and linear algebra. The book is also an excellent reference for statisticians, engineers, economists, and readers interested in the linear statistical model.
Numerical And Symbolic Computations Of Generalized Inverses

We introduce new methods connecting numerics and symbolic computations, i.e., both the direct and iterative methods as well as the symbolic method for computing the generalized inverses. These will be useful for Engineers and Statisticians, in addition to applied mathematicians.Also, main applications of generalized inverses will be presented. Symbolic method covered in our book but not discussed in other book, which is important for numerical-symbolic computations.