Matrix Algebra For Linear Models

Download Matrix Algebra For Linear Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Matrix Algebra For Linear Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Linear Models and the Relevant Distributions and Matrix Algebra

Linear Models and the Relevant Distributions and Matrix Algebra: A Unified Approach, Volume 2 covers several important topics that were not included in the first volume. The second volume complements the first, providing detailed solutions to the exercises in both volumes, thereby greatly enhancing its appeal for use in advanced statistics programs. This volume can serve as a valuable reference. It can also serve as a resource in a mathematical statistics course for use in illustrating various theoretical concepts in the context of a relatively complex setting of great practical importance. Together with the first volume, this volume provides a largely self-contained treatment of an important area of statistics and should prove highly useful to graduate students and others. Key Features: Includes solutions to the exercises from both the first and second volumes Includes coverage of several topics not covered in the first volume Highly valuable as a reference book for graduate students and researchers
Matrix Algebra for Linear Models

Author: Marvin H. J. Gruber
language: en
Publisher: John Wiley & Sons
Release Date: 2013-12-31
A self-contained introduction to matrix analysis theory and applications in the field of statistics Comprehensive in scope, Matrix Algebra for Linear Models offers a succinct summary of matrix theory and its related applications to statistics, especially linear models. The book provides a unified presentation of the mathematical properties and statistical applications of matrices in order to define and manipulate data. Written for theoretical and applied statisticians, the book utilizes multiple numerical examples to illustrate key ideas, methods, and techniques crucial to understanding matrix algebra’s application in linear models. Matrix Algebra for Linear Models expertly balances concepts and methods allowing for a side-by-side presentation of matrix theory and its linear model applications. Including concise summaries on each topic, the book also features: Methods of deriving results from the properties of eigenvalues and the singular value decomposition Solutions to matrix optimization problems for obtaining more efficient biased estimators for parameters in linear regression models A section on the generalized singular value decomposition Multiple chapter exercises with selected answers to enhance understanding of the presented material Matrix Algebra for Linear Models is an ideal textbook for advanced undergraduate and graduate-level courses on statistics, matrices, and linear algebra. The book is also an excellent reference for statisticians, engineers, economists, and readers interested in the linear statistical model.
Linear Algebra and Linear Models

Author: R. B. Bapat
language: en
Publisher: Springer Science & Business Media
Release Date: 2000
This book provides a rigorous introduction to the basic aspects of the theory of linear estimation and hypothesis testing, covering the necessary prerequisites in matrices, multivariate normal distribution and distributions of quadratic forms along the way. It will appeal to advanced undergraduate and first-year graduate students, research mathematicians and statisticians.