Predictive Clustering

Download Predictive Clustering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Predictive Clustering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
DATA SCIENCE FOR SALES ANALYSIS, FORECASTING, CLUSTERING, AND PREDICTION WITH PYTHON

In this comprehensive data science project focusing on sales analysis, forecasting, clustering, and prediction with Python, we embarked on an enlightening journey of data exploration and analysis. Our primary objective was to gain valuable insights from the dataset and leverage the power of machine learning to make accurate predictions and informed decisions. We began by meticulously exploring the dataset, examining its structure, and identifying any missing or inconsistent data. By visualizing features' distributions and conducting statistical analyses, we gained a better understanding of the data's characteristics and potential challenges. The first key aspect of the project was weekly sales forecasting. We employed various machine learning regression models, including Linear Regression, Support Vector Regression, Random Forest Regression, Decision Tree Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, KNN Regression, Catboost Regression, Naïve Bayes Regression, and Multi-Layer Perceptron Regression. These models enabled us to predict weekly sales based on relevant features, allowing us to uncover patterns and relationships between different factors and sales performance. To optimize the performance of our regression models, we employed grid search with cross-validation. This technique systematically explored hyperparameter combinations to find the optimal configuration, maximizing the models' accuracy and predictive capabilities. Moving on to data segmentation, we adopted the widely-used K-means clustering technique, an unsupervised learning method. The goal was to divide data into distinct segments. By determining the optimal number of clusters through grid search with cross-validation, we ensured that the clustering accurately captured the underlying patterns in the data. The next phase of the project focused on predicting the cluster of new customers using machine learning classifiers. We employed powerful classifiers such as Logistic Regression, K-Nearest Neighbors, Support Vector, Decision Trees, Random Forests, Gradient Boosting, Adaboost, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP) to make accurate predictions. Grid search with cross-validation was again applied to fine-tune the classifiers' hyperparameters, enhancing their performance. Throughout the project, we emphasized the significance of feature scaling techniques, such as Min-Max scaling and Standardization. These preprocessing steps played a crucial role in ensuring that all features were on the same scale, contributing equally during model training, and improving the models' interpretability. Evaluation of our models was conducted using various metrics. For regression tasks, we utilized mean squared error, while classification tasks employed accuracy, precision, recall, and F1-score. The use of cross-validation helped validate the models' robustness, providing comprehensive assessments of their effectiveness. Visualization played a vital role in presenting our findings effectively. Utilizing libraries such as Matplotlib and Seaborn, we created informative visualizations that facilitated the communication of complex insights to stakeholders and decision-makers. Throughout the project, we followed an iterative approach, refining our strategies through data preprocessing, model training, and hyperparameter tuning. The grid search technique proved to be an invaluable tool in identifying the best parameter combinations, resulting in more accurate predictions and meaningful customer segmentation. In conclusion, this data science project demonstrated the power of machine learning techniques in sales analysis, forecasting, and customer segmentation. The insights and recommendations generated from the models can provide valuable guidance for businesses seeking to optimize sales strategies, target marketing efforts, and make data-driven decisions to achieve growth and success. The project showcases the importance of leveraging advanced analytical methods to unlock hidden patterns and unleash the full potential of data for business success.
Clustering

This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.
Inductive Databases and Constraint-Based Data Mining

Author: Sašo Džeroski
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-11-18
This book is about inductive databases and constraint-based data mining, emerging research topics lying at the intersection of data mining and database research. The aim of the book as to provide an overview of the state-of- the art in this novel and - citing research area. Of special interest are the recent methods for constraint-based mining of global models for prediction and clustering, the uni?cation of pattern mining approaches through constraint programming, the clari?cation of the re- tionship between mining local patterns and global models, and the proposed in- grative frameworks and approaches for inducive databases. On the application side, applications to practically relevant problems from bioinformatics are presented. Inductive databases (IDBs) represent a database view on data mining and kno- edge discovery. IDBs contain not only data, but also generalizations (patterns and models) valid in the data. In an IDB, ordinary queries can be used to access and - nipulate data, while inductive queries can be used to generate (mine), manipulate, and apply patterns and models. In the IDB framework, patterns and models become ”?rst-class citizens” and KDD becomes an extended querying process in which both the data and the patterns/models that hold in the data are queried.