Physics Of Stochastic Processes


Download Physics Of Stochastic Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Physics Of Stochastic Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Stochastic Processes in Physics and Chemistry


Stochastic Processes in Physics and Chemistry

Author: N.G. Van Kampen

language: en

Publisher: Elsevier

Release Date: 1992-11-20


DOWNLOAD





This new edition of Van Kampen's standard work has been completely revised and updated. Three major changes have also been made. The Langevin equation receives more attention in a separate chapter in which non-Gaussian and colored noise are introduced. Another additional chapter contains old and new material on first-passage times and related subjects which lay the foundation for the chapter on unstable systems. Finally a completely new chapter has been written on the quantum mechanical foundations of noise. The references have also been expanded and updated.

An Introduction to Stochastic Processes in Physics


An Introduction to Stochastic Processes in Physics

Author: Don S. Lemons

language: en

Publisher: JHU Press

Release Date: 2002-06-21


DOWNLOAD





This book provides an accessible introduction to stochastic processes in physics and describes the basic mathematical tools of the trade: probability, random walks, and Wiener and Ornstein-Uhlenbeck processes. It includes end-of-chapter problems and emphasizes applications. An Introduction to Stochastic Processes in Physics builds directly upon early-twentieth-century explanations of the "peculiar character in the motions of the particles of pollen in water" as described, in the early nineteenth century, by the biologist Robert Brown. Lemons has adopted Paul Langevin's 1908 approach of applying Newton's second law to a "Brownian particle on which the total force included a random component" to explain Brownian motion. This method builds on Newtonian dynamics and provides an accessible explanation to anyone approaching the subject for the first time. Students will find this book a useful aid to learning the unfamiliar mathematical aspects of stochastic processes while applying them to physical processes that he or she has already encountered.

Stochastic Processes in Physics, Chemistry, and Biology


Stochastic Processes in Physics, Chemistry, and Biology

Author: Jan A. Freund

language: en

Publisher: Springer

Release Date: 2008-01-11


DOWNLOAD





The theory of stochastic processes originally grew out of efforts to describe Brownian motion quantitatively. Today it provides a huge arsenal of methods suitable for analyzing the influence of noise on a wide range of systems. The credit for acquiring all the deep insights and powerful methods is due ma- ly to a handful of physicists and mathematicians: Einstein, Smoluchowski, Langevin, Wiener, Stratonovich, etc. Hence it is no surprise that until - cently the bulk of basic and applied stochastic research was devoted to purely mathematical and physical questions. However, in the last decade we have witnessed an enormous growth of results achieved in other sciences - especially chemistry and biology - based on applying methods of stochastic processes. One reason for this stochastics boom may be that the realization that noise plays a constructive rather than the expected deteriorating role has spread to communities beyond physics. Besides their aesthetic appeal these noise-induced, noise-supported or noise-enhanced effects sometimes offer an explanation for so far open pr- lems (information transmission in the nervous system and information p- cessing in the brain, processes at the cell level, enzymatic reactions, etc.). They may also pave the way to novel technological applications (noise-- hanced reaction rates, noise-induced transport and separation on the na- scale, etc.). Key words to be mentioned in this context are stochastic r- onance, Brownian motors or ratchets, and noise-supported phenomena in excitable systems.