An Introduction To Stochastic Processes In Physics

Download An Introduction To Stochastic Processes In Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Stochastic Processes In Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Stochastic Processes in Physics

This book provides an accessible introduction to stochastic processes in physics and describes the basic mathematical tools of the trade: probability, random walks, and Wiener and Ornstein-Uhlenbeck processes. It includes end-of-chapter problems and emphasizes applications. An Introduction to Stochastic Processes in Physics builds directly upon early-twentieth-century explanations of the "peculiar character in the motions of the particles of pollen in water" as described, in the early nineteenth century, by the biologist Robert Brown. Lemons has adopted Paul Langevin's 1908 approach of applying Newton's second law to a "Brownian particle on which the total force included a random component" to explain Brownian motion. This method builds on Newtonian dynamics and provides an accessible explanation to anyone approaching the subject for the first time. Students will find this book a useful aid to learning the unfamiliar mathematical aspects of stochastic processes while applying them to physical processes that he or she has already encountered.
Stochastic Processes

Author: Wolfgang Paul
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-07-11
This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.
Introduction To Stochastic Processes

The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.